基于自适应共识的边缘计算聚合

Firas Al-Doghman, Z. Chaczko, Wayne Brookes
{"title":"基于自适应共识的边缘计算聚合","authors":"Firas Al-Doghman, Z. Chaczko, Wayne Brookes","doi":"10.1109/ICSENG.2018.8638200","DOIUrl":null,"url":null,"abstract":"The swift expansion in employing IoT and the tendency to apply its application have encompassed a wide range of fields in our life. The heterogeneity and the massive amount of data produced from IoT require adaptive collection and transmission processes that function closed to front-end to mitigate these issues. In this paper, We introduced a method of aggregating IoT data in a consensus way using Bayesian analysis and Markov Chain techniques. The aim is to enhance the quality of data traveling within IoT framework.","PeriodicalId":356324,"journal":{"name":"2018 26th International Conference on Systems Engineering (ICSEng)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Consensus-based Aggregation for Edge Computing\",\"authors\":\"Firas Al-Doghman, Z. Chaczko, Wayne Brookes\",\"doi\":\"10.1109/ICSENG.2018.8638200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The swift expansion in employing IoT and the tendency to apply its application have encompassed a wide range of fields in our life. The heterogeneity and the massive amount of data produced from IoT require adaptive collection and transmission processes that function closed to front-end to mitigate these issues. In this paper, We introduced a method of aggregating IoT data in a consensus way using Bayesian analysis and Markov Chain techniques. The aim is to enhance the quality of data traveling within IoT framework.\",\"PeriodicalId\":356324,\"journal\":{\"name\":\"2018 26th International Conference on Systems Engineering (ICSEng)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th International Conference on Systems Engineering (ICSEng)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENG.2018.8638200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Systems Engineering (ICSEng)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENG.2018.8638200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网应用的迅速扩展和应用趋势已经涵盖了我们生活中的广泛领域。物联网产生的异质性和大量数据需要自适应的收集和传输过程,这些过程对前端功能关闭,以缓解这些问题。在本文中,我们介绍了一种使用贝叶斯分析和马尔科夫链技术以共识方式聚合物联网数据的方法。其目的是提高物联网框架内数据传输的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Consensus-based Aggregation for Edge Computing
The swift expansion in employing IoT and the tendency to apply its application have encompassed a wide range of fields in our life. The heterogeneity and the massive amount of data produced from IoT require adaptive collection and transmission processes that function closed to front-end to mitigate these issues. In this paper, We introduced a method of aggregating IoT data in a consensus way using Bayesian analysis and Markov Chain techniques. The aim is to enhance the quality of data traveling within IoT framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信