正交多项式系统的求和核

F. Filbir, R. Lasser, J. Obermaier
{"title":"正交多项式系统的求和核","authors":"F. Filbir, R. Lasser, J. Obermaier","doi":"10.1201/9781420036053.CH15","DOIUrl":null,"url":null,"abstract":"The convergence of weighted Fourier expansions with respect to orthogonal polynomial systems fP n : n 2 N 0 g is studied in certain Banach spaces B L 1 (), where the support of the orthogonality measure is assumed to be innnite and compact. We focus on orthogonal polynomial systems which induce a hypergroup structure on N 0 and a convolution structure on supp. Especially the Dirichlet kernel, a Fej er-type kernel and the de la Vall ee-Poussin kernel are studied, where we stress the analogy to the trigonometric case.","PeriodicalId":139586,"journal":{"name":"Handbook of Analytic-Computational Methods in Applied Mathematics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Summation Kernels for Orthogonal Polynomial Systems\",\"authors\":\"F. Filbir, R. Lasser, J. Obermaier\",\"doi\":\"10.1201/9781420036053.CH15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convergence of weighted Fourier expansions with respect to orthogonal polynomial systems fP n : n 2 N 0 g is studied in certain Banach spaces B L 1 (), where the support of the orthogonality measure is assumed to be innnite and compact. We focus on orthogonal polynomial systems which induce a hypergroup structure on N 0 and a convolution structure on supp. Especially the Dirichlet kernel, a Fej er-type kernel and the de la Vall ee-Poussin kernel are studied, where we stress the analogy to the trigonometric case.\",\"PeriodicalId\":139586,\"journal\":{\"name\":\"Handbook of Analytic-Computational Methods in Applied Mathematics\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Analytic-Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781420036053.CH15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Analytic-Computational Methods in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781420036053.CH15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了正交多项式系统fP n: n2n0g在Banach空间中加权傅里叶展开式的收敛性,其中正交测度的支持被假设为无限紧。本文重点研究了在n0上产生超群结构和在p上产生卷积结构的正交多项式系统,特别是研究了Dirichlet核、Fej型核和de la Vall e- poussin核,其中强调了与三角情况的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Summation Kernels for Orthogonal Polynomial Systems
The convergence of weighted Fourier expansions with respect to orthogonal polynomial systems fP n : n 2 N 0 g is studied in certain Banach spaces B L 1 (), where the support of the orthogonality measure is assumed to be innnite and compact. We focus on orthogonal polynomial systems which induce a hypergroup structure on N 0 and a convolution structure on supp. Especially the Dirichlet kernel, a Fej er-type kernel and the de la Vall ee-Poussin kernel are studied, where we stress the analogy to the trigonometric case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信