用Kinect传感器模拟人体微多普勒特征

B. Erol, C. Karabacak, S. Gurbuz, A. Gurbuz
{"title":"用Kinect传感器模拟人体微多普勒特征","authors":"B. Erol, C. Karabacak, S. Gurbuz, A. Gurbuz","doi":"10.1109/RADAR.2014.6875712","DOIUrl":null,"url":null,"abstract":"The availability and access to real radar data collected for targets with a desired characteristic is often limited by monetary and practical resources, especially in the case of airborne radar. In such cases, the generation of accurate simulated radar data is critical to the successful design and testing of radar signal processing algorithms. In the case of human micro-Doppler research, simulations of the expected target signature are required for a wide parameter space, including height, weight, gender, range, angle and waveform. The applicability of kinematic models is limited to just walking, while the use of motion capture databases is restricted to the test subjects and scenarios recorded by a third-party. To enable the simulation of human micro-Doppler signatures at will, this work exploits the inexpensive Kinect sensor to generate human spectrograms of any motion and for any subject from skeleton tracking data. The simulated spectrograms generated are statistically compared with those generated from high quality motion capture data. It is shown that the Kinect spectrograms are of sufficient quality to be used in simulation and classification of human micro-Doppler.","PeriodicalId":127690,"journal":{"name":"2014 IEEE Radar Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Simulation of human micro-Doppler signatures with Kinect sensor\",\"authors\":\"B. Erol, C. Karabacak, S. Gurbuz, A. Gurbuz\",\"doi\":\"10.1109/RADAR.2014.6875712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability and access to real radar data collected for targets with a desired characteristic is often limited by monetary and practical resources, especially in the case of airborne radar. In such cases, the generation of accurate simulated radar data is critical to the successful design and testing of radar signal processing algorithms. In the case of human micro-Doppler research, simulations of the expected target signature are required for a wide parameter space, including height, weight, gender, range, angle and waveform. The applicability of kinematic models is limited to just walking, while the use of motion capture databases is restricted to the test subjects and scenarios recorded by a third-party. To enable the simulation of human micro-Doppler signatures at will, this work exploits the inexpensive Kinect sensor to generate human spectrograms of any motion and for any subject from skeleton tracking data. The simulated spectrograms generated are statistically compared with those generated from high quality motion capture data. It is shown that the Kinect spectrograms are of sufficient quality to be used in simulation and classification of human micro-Doppler.\",\"PeriodicalId\":127690,\"journal\":{\"name\":\"2014 IEEE Radar Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2014.6875712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.6875712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

为具有期望特性的目标收集的真实雷达数据的可用性和获取往往受到资金和实际资源的限制,特别是在机载雷达的情况下。在这种情况下,生成准确的模拟雷达数据对于雷达信号处理算法的成功设计和测试至关重要。在人体微多普勒研究中,预期目标信号的模拟需要在很宽的参数空间内进行,包括身高、体重、性别、距离、角度和波形。运动学模型的适用性仅限于步行,而运动捕捉数据库的使用仅限于第三方记录的测试对象和场景。为了能够随意模拟人体微多普勒特征,这项工作利用廉价的Kinect传感器从骨骼跟踪数据中生成任何运动和任何主体的人体频谱图。所生成的模拟谱图与高质量运动捕捉数据生成的谱图进行了统计比较。结果表明,Kinect声谱图具有足够的质量,可用于人体微多普勒的模拟和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of human micro-Doppler signatures with Kinect sensor
The availability and access to real radar data collected for targets with a desired characteristic is often limited by monetary and practical resources, especially in the case of airborne radar. In such cases, the generation of accurate simulated radar data is critical to the successful design and testing of radar signal processing algorithms. In the case of human micro-Doppler research, simulations of the expected target signature are required for a wide parameter space, including height, weight, gender, range, angle and waveform. The applicability of kinematic models is limited to just walking, while the use of motion capture databases is restricted to the test subjects and scenarios recorded by a third-party. To enable the simulation of human micro-Doppler signatures at will, this work exploits the inexpensive Kinect sensor to generate human spectrograms of any motion and for any subject from skeleton tracking data. The simulated spectrograms generated are statistically compared with those generated from high quality motion capture data. It is shown that the Kinect spectrograms are of sufficient quality to be used in simulation and classification of human micro-Doppler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信