毫米波MIMO-OFDM联合雷达与通信系统中的稀疏估计

Meesam Jafri, Sana Anwer, Suraj Srivastava, A. Jagannatham
{"title":"毫米波MIMO-OFDM联合雷达与通信系统中的稀疏估计","authors":"Meesam Jafri, Sana Anwer, Suraj Srivastava, A. Jagannatham","doi":"10.1109/SSP53291.2023.10208022","DOIUrl":null,"url":null,"abstract":"This paper considers a joint radar and communication (JRC) system towards radar cross-section (RCS) parameter and channel estimation in millimeter wave (mmWave) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. The proposed algorithms are based on the hybrid mmWave MIMO architecture. First, the orthogonal matching pursuit (OMP)-based framework is conceived for radar target parameter estimation. Next, a novel multiple measurement vector (MMV)-based Bayesian learning (MBL) algorithm is proposed for mmWave MIMO channel estimation in JRC systems. Subsequently, these quantities are employed at the dual-functional radar-communication (DFRC) base station (BS) and at the user equipment (UE) toward successful data transmission and detection, respectively. The proposed techniques exploit the sparsity inherent in the radar scattering environment and the simultaneous sparsity of the wireless channel across all the subcarriers for improved performance. Numerical results demonstrate the efficacy of the proposed techniques and the improved performance in comparison to existing sparse recovery techniques as well as the conventional non-sparse parameter estimation algorithms.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Estimation in mmWave MIMO-OFDM Joint Radar and Communication (JRC) Systems\",\"authors\":\"Meesam Jafri, Sana Anwer, Suraj Srivastava, A. Jagannatham\",\"doi\":\"10.1109/SSP53291.2023.10208022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a joint radar and communication (JRC) system towards radar cross-section (RCS) parameter and channel estimation in millimeter wave (mmWave) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. The proposed algorithms are based on the hybrid mmWave MIMO architecture. First, the orthogonal matching pursuit (OMP)-based framework is conceived for radar target parameter estimation. Next, a novel multiple measurement vector (MMV)-based Bayesian learning (MBL) algorithm is proposed for mmWave MIMO channel estimation in JRC systems. Subsequently, these quantities are employed at the dual-functional radar-communication (DFRC) base station (BS) and at the user equipment (UE) toward successful data transmission and detection, respectively. The proposed techniques exploit the sparsity inherent in the radar scattering environment and the simultaneous sparsity of the wireless channel across all the subcarriers for improved performance. Numerical results demonstrate the efficacy of the proposed techniques and the improved performance in comparison to existing sparse recovery techniques as well as the conventional non-sparse parameter estimation algorithms.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10208022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对毫米波(mmWave)多输入多输出(MIMO)正交频分复用(OFDM)系统中雷达截面(RCS)参数和信道估计问题,提出了一种联合雷达与通信(JRC)系统。所提出的算法基于混合毫米波MIMO架构。首先,提出了基于正交匹配追踪(OMP)的雷达目标参数估计框架。其次,提出了一种新的基于多测量向量(MMV)的贝叶斯学习(MBL)算法,用于JRC系统中毫米波MIMO信道估计。随后,这些数量分别用于双功能雷达通信(DFRC)基站(BS)和用户设备(UE),以成功传输和检测数据。所提出的技术利用雷达散射环境固有的稀疏性和所有子载波上无线信道的同时稀疏性来提高性能。数值结果表明,与现有的稀疏恢复技术和传统的非稀疏参数估计算法相比,所提方法的有效性和性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Estimation in mmWave MIMO-OFDM Joint Radar and Communication (JRC) Systems
This paper considers a joint radar and communication (JRC) system towards radar cross-section (RCS) parameter and channel estimation in millimeter wave (mmWave) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. The proposed algorithms are based on the hybrid mmWave MIMO architecture. First, the orthogonal matching pursuit (OMP)-based framework is conceived for radar target parameter estimation. Next, a novel multiple measurement vector (MMV)-based Bayesian learning (MBL) algorithm is proposed for mmWave MIMO channel estimation in JRC systems. Subsequently, these quantities are employed at the dual-functional radar-communication (DFRC) base station (BS) and at the user equipment (UE) toward successful data transmission and detection, respectively. The proposed techniques exploit the sparsity inherent in the radar scattering environment and the simultaneous sparsity of the wireless channel across all the subcarriers for improved performance. Numerical results demonstrate the efficacy of the proposed techniques and the improved performance in comparison to existing sparse recovery techniques as well as the conventional non-sparse parameter estimation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信