{"title":"S2N2:一种用于流脉冲神经网络的FPGA加速器","authors":"Alireza Khodamoradi, K. Denolf, R. Kastner","doi":"10.1145/3431920.3439283","DOIUrl":null,"url":null,"abstract":"Spiking Neural Networks (SNNs) are the next generation of Artificial Neural Networks (ANNs) that utilize an event-based representation to perform more efficient computation. Most SNN implementations have a systolic array-based architecture and, by assuming high sparsity in spikes, significantly reduce computing in their designs. This work shows this assumption does not hold for applications with signals of large temporal dimension. We develop a streaming SNN (S2N2) architecture that can support fixed-per-layer axonal and synaptic delays for its network. Our architecture is built upon FINN and thus efficiently utilizes FPGA resources. We show how radio frequency processing matches our S2N2 computational model. By not performing tick-batching, a stream of RF samples can efficiently be processed by S2N2, improving the memory utilization by more than three orders of magnitude.","PeriodicalId":386071,"journal":{"name":"The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"S2N2: A FPGA Accelerator for Streaming Spiking Neural Networks\",\"authors\":\"Alireza Khodamoradi, K. Denolf, R. Kastner\",\"doi\":\"10.1145/3431920.3439283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking Neural Networks (SNNs) are the next generation of Artificial Neural Networks (ANNs) that utilize an event-based representation to perform more efficient computation. Most SNN implementations have a systolic array-based architecture and, by assuming high sparsity in spikes, significantly reduce computing in their designs. This work shows this assumption does not hold for applications with signals of large temporal dimension. We develop a streaming SNN (S2N2) architecture that can support fixed-per-layer axonal and synaptic delays for its network. Our architecture is built upon FINN and thus efficiently utilizes FPGA resources. We show how radio frequency processing matches our S2N2 computational model. By not performing tick-batching, a stream of RF samples can efficiently be processed by S2N2, improving the memory utilization by more than three orders of magnitude.\",\"PeriodicalId\":386071,\"journal\":{\"name\":\"The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3431920.3439283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3431920.3439283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
S2N2: A FPGA Accelerator for Streaming Spiking Neural Networks
Spiking Neural Networks (SNNs) are the next generation of Artificial Neural Networks (ANNs) that utilize an event-based representation to perform more efficient computation. Most SNN implementations have a systolic array-based architecture and, by assuming high sparsity in spikes, significantly reduce computing in their designs. This work shows this assumption does not hold for applications with signals of large temporal dimension. We develop a streaming SNN (S2N2) architecture that can support fixed-per-layer axonal and synaptic delays for its network. Our architecture is built upon FINN and thus efficiently utilizes FPGA resources. We show how radio frequency processing matches our S2N2 computational model. By not performing tick-batching, a stream of RF samples can efficiently be processed by S2N2, improving the memory utilization by more than three orders of magnitude.