COVID-19 α:通过推文分析的COVID-19症状互动时空可视化

Biddut Sarker Bijoy, Syeda Jannatus Saba, Souvik Sarkar, Md. Saiful Islam, Sheikh Rabiul Islam, M. R. Amin, Shubhra (Santu) Karmaker
{"title":"COVID-19 α:通过推文分析的COVID-19症状互动时空可视化","authors":"Biddut Sarker Bijoy, Syeda Jannatus Saba, Souvik Sarkar, Md. Saiful Islam, Sheikh Rabiul Islam, M. R. Amin, Shubhra (Santu) Karmaker","doi":"10.1145/3397482.3450715","DOIUrl":null,"url":null,"abstract":"In this demo, we focus on analyzing COVID-19 related symptoms across the globe reported through tweets by building an interactive spatio-temporal visualization tool, i.e., COVID19α. Using around 462 million tweets collected over a span of six months, COVID19α provides three different types of visualization tools: 1) Spatial Visualization with a focus on visualizing COVID-19 symptoms across different geographic locations; 2) Temporal Visualization with a focus on visualizing the evolution of COVID-19 symptoms over time for a particular geographic location; and 3) Spatio-Temporal Visualization with a focus on combining both spatial and temporal analysis to provide comparative visualizations between two (or more) symptoms across time and space. We believe that health professionals, scientists, and policymakers will be able to leverage this interactive tool to devise better and targeted health intervention policies. Our developed interactive visualization tool is publicly available at https://bijoy-sust.github.io/Covid19/.","PeriodicalId":216190,"journal":{"name":"26th International Conference on Intelligent User Interfaces - Companion","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"COVID19α: Interactive Spatio-Temporal Visualization of COVID-19 Symptoms through Tweet Analysis\",\"authors\":\"Biddut Sarker Bijoy, Syeda Jannatus Saba, Souvik Sarkar, Md. Saiful Islam, Sheikh Rabiul Islam, M. R. Amin, Shubhra (Santu) Karmaker\",\"doi\":\"10.1145/3397482.3450715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this demo, we focus on analyzing COVID-19 related symptoms across the globe reported through tweets by building an interactive spatio-temporal visualization tool, i.e., COVID19α. Using around 462 million tweets collected over a span of six months, COVID19α provides three different types of visualization tools: 1) Spatial Visualization with a focus on visualizing COVID-19 symptoms across different geographic locations; 2) Temporal Visualization with a focus on visualizing the evolution of COVID-19 symptoms over time for a particular geographic location; and 3) Spatio-Temporal Visualization with a focus on combining both spatial and temporal analysis to provide comparative visualizations between two (or more) symptoms across time and space. We believe that health professionals, scientists, and policymakers will be able to leverage this interactive tool to devise better and targeted health intervention policies. Our developed interactive visualization tool is publicly available at https://bijoy-sust.github.io/Covid19/.\",\"PeriodicalId\":216190,\"journal\":{\"name\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th International Conference on Intelligent User Interfaces - Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397482.3450715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Intelligent User Interfaces - Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397482.3450715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本次演示中,我们通过构建交互式时空可视化工具COVID-19 α,重点分析全球范围内通过推特报告的COVID-19相关症状。COVID-19 α利用在六个月内收集的约4.62亿条推文,提供了三种不同类型的可视化工具:1)空间可视化,重点是可视化不同地理位置的COVID-19症状;2)时间可视化,重点是可视化特定地理位置的COVID-19症状随时间的演变;3)时空可视化,重点是将空间和时间分析相结合,提供跨时间和空间的两种(或多种)症状之间的比较可视化。我们相信,卫生专业人员、科学家和政策制定者将能够利用这一互动工具来制定更好的、有针对性的卫生干预政策。我们开发的交互式可视化工具可在https://bijoy-sust.github.io/Covid19/上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID19α: Interactive Spatio-Temporal Visualization of COVID-19 Symptoms through Tweet Analysis
In this demo, we focus on analyzing COVID-19 related symptoms across the globe reported through tweets by building an interactive spatio-temporal visualization tool, i.e., COVID19α. Using around 462 million tweets collected over a span of six months, COVID19α provides three different types of visualization tools: 1) Spatial Visualization with a focus on visualizing COVID-19 symptoms across different geographic locations; 2) Temporal Visualization with a focus on visualizing the evolution of COVID-19 symptoms over time for a particular geographic location; and 3) Spatio-Temporal Visualization with a focus on combining both spatial and temporal analysis to provide comparative visualizations between two (or more) symptoms across time and space. We believe that health professionals, scientists, and policymakers will be able to leverage this interactive tool to devise better and targeted health intervention policies. Our developed interactive visualization tool is publicly available at https://bijoy-sust.github.io/Covid19/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信