从用户-项目交互中学习联合搜索和推荐模型

Hamed Zamani
{"title":"从用户-项目交互中学习联合搜索和推荐模型","authors":"Hamed Zamani","doi":"10.1145/3336191.3371818","DOIUrl":null,"url":null,"abstract":"Existing learning to rank models for information retrieval are trained based on explicit or implicit query-document relevance information. In this paper, we study the task of learning a retrieval model based on user-item interactions. Our model has potential applications to the systems with rich user-item interaction data, such as browsing and recommendation, in which having an accurate search engine is desired. This includes media streaming services and e-commerce websites among others. Inspired by the neural approaches to collaborative filtering and the language modeling approaches to information retrieval, our model is jointly optimized to predict user-item interactions and reconstruct the item textual descriptions. In more details, our model learns user and item representations such that they can accurately predict future user-item interactions, while generating an effective unigram language model for each item. Our experiments on four diverse datasets in the context of movie and product search and recommendation demonstrate that our model substantially outperforms competitive retrieval baselines, in addition to providing comparable performance to state-of-the-art hybrid recommendation models.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Learning a Joint Search and Recommendation Model from User-Item Interactions\",\"authors\":\"Hamed Zamani\",\"doi\":\"10.1145/3336191.3371818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing learning to rank models for information retrieval are trained based on explicit or implicit query-document relevance information. In this paper, we study the task of learning a retrieval model based on user-item interactions. Our model has potential applications to the systems with rich user-item interaction data, such as browsing and recommendation, in which having an accurate search engine is desired. This includes media streaming services and e-commerce websites among others. Inspired by the neural approaches to collaborative filtering and the language modeling approaches to information retrieval, our model is jointly optimized to predict user-item interactions and reconstruct the item textual descriptions. In more details, our model learns user and item representations such that they can accurately predict future user-item interactions, while generating an effective unigram language model for each item. Our experiments on four diverse datasets in the context of movie and product search and recommendation demonstrate that our model substantially outperforms competitive retrieval baselines, in addition to providing comparable performance to state-of-the-art hybrid recommendation models.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

现有的信息检索排序学习模型是基于显式或隐式查询文档相关信息进行训练的。在本文中,我们研究了基于用户-项目交互的检索模型学习任务。我们的模型对于具有丰富的用户-项目交互数据的系统具有潜在的应用,例如浏览和推荐,其中需要具有准确的搜索引擎。这包括流媒体服务和电子商务网站等。受协同过滤的神经方法和信息检索的语言建模方法的启发,我们的模型被联合优化以预测用户-物品交互和重建物品文本描述。更详细地说,我们的模型学习用户和项目表示,这样它们就可以准确地预测未来的用户-项目交互,同时为每个项目生成有效的一元语言模型。我们在电影和产品搜索和推荐的背景下对四个不同数据集进行的实验表明,除了提供与最先进的混合推荐模型相当的性能外,我们的模型实质上优于竞争性检索基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning a Joint Search and Recommendation Model from User-Item Interactions
Existing learning to rank models for information retrieval are trained based on explicit or implicit query-document relevance information. In this paper, we study the task of learning a retrieval model based on user-item interactions. Our model has potential applications to the systems with rich user-item interaction data, such as browsing and recommendation, in which having an accurate search engine is desired. This includes media streaming services and e-commerce websites among others. Inspired by the neural approaches to collaborative filtering and the language modeling approaches to information retrieval, our model is jointly optimized to predict user-item interactions and reconstruct the item textual descriptions. In more details, our model learns user and item representations such that they can accurately predict future user-item interactions, while generating an effective unigram language model for each item. Our experiments on four diverse datasets in the context of movie and product search and recommendation demonstrate that our model substantially outperforms competitive retrieval baselines, in addition to providing comparable performance to state-of-the-art hybrid recommendation models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信