温度调节气体传感器预测污染物气体浓度的回归模型

A. Kobald, U. Weimar, N. Bârsan
{"title":"温度调节气体传感器预测污染物气体浓度的回归模型","authors":"A. Kobald, U. Weimar, N. Bârsan","doi":"10.1109/ISOEN54820.2022.9789650","DOIUrl":null,"url":null,"abstract":"Air pollution presents an increasingly important issue on a global scale. Gas sensors based on Semiconducting Metal Oxides (SMOX), exhibit a high sensitivity and low limit of detection, making them an ideal candidate to detect pollutant gases to conform to guidelines published by the world health organization. In this work, we show that the temperature modulation of a single multi-pixel SMOX gas sensor is a cost and size efficient way to detect and quantify pollutant gases relevant for outdoor air quality in a broad range of concentrations. Roughly 1 700 hours of data were recorded and analyzed. A convolutional neural network regression model trained on 4 192 samples was able to predict pollutants in random gas mixtures with low mean relative errors (MRE): CO - 4.2 %, NO2 - 11.1 %, O3 - 13.6 %, and SO2 16.1 %. Relative humidity was predicted with an MRE of 2.5 %.","PeriodicalId":427373,"journal":{"name":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regression Model for the Prediction of Pollutant Gas Concentrations with Temperature Modulated Gas Sensors\",\"authors\":\"A. Kobald, U. Weimar, N. Bârsan\",\"doi\":\"10.1109/ISOEN54820.2022.9789650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution presents an increasingly important issue on a global scale. Gas sensors based on Semiconducting Metal Oxides (SMOX), exhibit a high sensitivity and low limit of detection, making them an ideal candidate to detect pollutant gases to conform to guidelines published by the world health organization. In this work, we show that the temperature modulation of a single multi-pixel SMOX gas sensor is a cost and size efficient way to detect and quantify pollutant gases relevant for outdoor air quality in a broad range of concentrations. Roughly 1 700 hours of data were recorded and analyzed. A convolutional neural network regression model trained on 4 192 samples was able to predict pollutants in random gas mixtures with low mean relative errors (MRE): CO - 4.2 %, NO2 - 11.1 %, O3 - 13.6 %, and SO2 16.1 %. Relative humidity was predicted with an MRE of 2.5 %.\",\"PeriodicalId\":427373,\"journal\":{\"name\":\"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOEN54820.2022.9789650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOEN54820.2022.9789650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在全球范围内,空气污染是一个日益重要的问题。基于半导体金属氧化物(SMOX)的气体传感器具有高灵敏度和低检测极限,使其成为检测污染物气体的理想候选者,符合世界卫生组织发布的准则。在这项工作中,我们证明了单个多像素SMOX气体传感器的温度调制是一种成本和尺寸有效的方法,可以在广泛的浓度范围内检测和量化与室外空气质量相关的污染气体。记录和分析了大约1700小时的数据。在4192个样本上训练的卷积神经网络回归模型能够以较低的平均相对误差(MRE)预测随机气体混合物中的污染物:CO - 4.2%, NO2 - 11.1%, O3 - 13.6%和SO2 16.1%。预测相对湿度的MRE为2.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression Model for the Prediction of Pollutant Gas Concentrations with Temperature Modulated Gas Sensors
Air pollution presents an increasingly important issue on a global scale. Gas sensors based on Semiconducting Metal Oxides (SMOX), exhibit a high sensitivity and low limit of detection, making them an ideal candidate to detect pollutant gases to conform to guidelines published by the world health organization. In this work, we show that the temperature modulation of a single multi-pixel SMOX gas sensor is a cost and size efficient way to detect and quantify pollutant gases relevant for outdoor air quality in a broad range of concentrations. Roughly 1 700 hours of data were recorded and analyzed. A convolutional neural network regression model trained on 4 192 samples was able to predict pollutants in random gas mixtures with low mean relative errors (MRE): CO - 4.2 %, NO2 - 11.1 %, O3 - 13.6 %, and SO2 16.1 %. Relative humidity was predicted with an MRE of 2.5 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信