基于神经网络的消费者购买行为分割

Chong Wang, Yanqing Wang
{"title":"基于神经网络的消费者购买行为分割","authors":"Chong Wang, Yanqing Wang","doi":"10.1109/COGINF.2009.5250679","DOIUrl":null,"url":null,"abstract":"The present algorithms for artificial neural network, to a certain extent, have various questions such as computational complexity, low accuracy and narrow scope of application. This paper presents a new algorithm for extracting accurate and comprehensible rules from databases via trained artificial neural network using genetic algorithm. The new algorithm does not depend on the ANN training algorithms; also it does not modify the training results. The genetic algorithm is used to find the optimal values of input attributes (chromosome), Xm, which maximize the output function ϕk of output node k. The function ϕk is nonlinear exponential function. The optimal chromosome is decoded and used to obtain a rule belonging to class k. The good result is achieved by applying the new algorithm to a given database for customers buying MP3.","PeriodicalId":420853,"journal":{"name":"2009 8th IEEE International Conference on Cognitive Informatics","volume":"41 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Segmentation of consumer's purchase behavior based on neural network\",\"authors\":\"Chong Wang, Yanqing Wang\",\"doi\":\"10.1109/COGINF.2009.5250679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present algorithms for artificial neural network, to a certain extent, have various questions such as computational complexity, low accuracy and narrow scope of application. This paper presents a new algorithm for extracting accurate and comprehensible rules from databases via trained artificial neural network using genetic algorithm. The new algorithm does not depend on the ANN training algorithms; also it does not modify the training results. The genetic algorithm is used to find the optimal values of input attributes (chromosome), Xm, which maximize the output function ϕk of output node k. The function ϕk is nonlinear exponential function. The optimal chromosome is decoded and used to obtain a rule belonging to class k. The good result is achieved by applying the new algorithm to a given database for customers buying MP3.\",\"PeriodicalId\":420853,\"journal\":{\"name\":\"2009 8th IEEE International Conference on Cognitive Informatics\",\"volume\":\"41 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 8th IEEE International Conference on Cognitive Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COGINF.2009.5250679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 8th IEEE International Conference on Cognitive Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2009.5250679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有的人工神经网络算法在一定程度上存在计算量大、精度低、适用范围窄等问题。本文提出了一种利用遗传算法通过训练好的人工神经网络从数据库中提取准确易懂规则的新算法。新算法不依赖于人工神经网络的训练算法;它也不会修改训练结果。遗传算法用于寻找输入属性(染色体)Xm的最优值,该值使输出节点k的输出函数ϕk最大化,该函数为非线性指数函数。对最优染色体进行解码,得到一条属于k类的规则。将新算法应用于给定的MP3购买数据库,取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of consumer's purchase behavior based on neural network
The present algorithms for artificial neural network, to a certain extent, have various questions such as computational complexity, low accuracy and narrow scope of application. This paper presents a new algorithm for extracting accurate and comprehensible rules from databases via trained artificial neural network using genetic algorithm. The new algorithm does not depend on the ANN training algorithms; also it does not modify the training results. The genetic algorithm is used to find the optimal values of input attributes (chromosome), Xm, which maximize the output function ϕk of output node k. The function ϕk is nonlinear exponential function. The optimal chromosome is decoded and used to obtain a rule belonging to class k. The good result is achieved by applying the new algorithm to a given database for customers buying MP3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信