一种模糊双聚类方法来关联web用户和页面

Vassiliki A. Koutsonikola, A. Vakali
{"title":"一种模糊双聚类方法来关联web用户和页面","authors":"Vassiliki A. Koutsonikola, A. Vakali","doi":"10.1504/IJKWI.2009.027923","DOIUrl":null,"url":null,"abstract":"With the rapid development of information technology, the significance of clustering in the process of delivering information to users is becoming more eminent. Especially in the web information space, clustering analysis can prove particularly beneficial for a variety of applications such as web personalisation and profiling, caching and prefetching and content delivery networks. In this paper, we propose a bi-clustering approach, which identifies groups of related web users and pages. The proposed approach is a three-step process that relies on the principles of spectral clustering analysis and provides a fuzzy relation scheme for the revealed users' and pages' clusters. Experiments have been conducted on both synthetic and real datasets to prove the proposed method's efficiency and reveal hidden knowledge.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A fuzzy bi-clustering approach to correlate web users and pages\",\"authors\":\"Vassiliki A. Koutsonikola, A. Vakali\",\"doi\":\"10.1504/IJKWI.2009.027923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of information technology, the significance of clustering in the process of delivering information to users is becoming more eminent. Especially in the web information space, clustering analysis can prove particularly beneficial for a variety of applications such as web personalisation and profiling, caching and prefetching and content delivery networks. In this paper, we propose a bi-clustering approach, which identifies groups of related web users and pages. The proposed approach is a three-step process that relies on the principles of spectral clustering analysis and provides a fuzzy relation scheme for the revealed users' and pages' clusters. Experiments have been conducted on both synthetic and real datasets to prove the proposed method's efficiency and reveal hidden knowledge.\",\"PeriodicalId\":113936,\"journal\":{\"name\":\"Int. J. Knowl. Web Intell.\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Web Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJKWI.2009.027923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2009.027923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

随着信息技术的飞速发展,集群在向用户传递信息过程中的重要性日益凸显。特别是在web信息空间,聚类分析可以证明对各种应用程序特别有益,例如web个性化和分析,缓存和预取以及内容交付网络。在本文中,我们提出了一种双聚类方法,该方法可以识别相关的web用户和页面组。该方法基于谱聚类分析原理,分三步进行,并为揭示的用户和页面聚类提供模糊关系方案。在合成数据集和真实数据集上进行了实验,证明了该方法的有效性,并揭示了隐藏的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy bi-clustering approach to correlate web users and pages
With the rapid development of information technology, the significance of clustering in the process of delivering information to users is becoming more eminent. Especially in the web information space, clustering analysis can prove particularly beneficial for a variety of applications such as web personalisation and profiling, caching and prefetching and content delivery networks. In this paper, we propose a bi-clustering approach, which identifies groups of related web users and pages. The proposed approach is a three-step process that relies on the principles of spectral clustering analysis and provides a fuzzy relation scheme for the revealed users' and pages' clusters. Experiments have been conducted on both synthetic and real datasets to prove the proposed method's efficiency and reveal hidden knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信