超宽带地面耦合雷达偏振分集检测不连续点的评价:时域有限差分建模与实验

F. Sagnard, Elias Tebchrany, V. Baltazart
{"title":"超宽带地面耦合雷达偏振分集检测不连续点的评价:时域有限差分建模与实验","authors":"F. Sagnard, Elias Tebchrany, V. Baltazart","doi":"10.1109/IWAGPR.2013.6601534","DOIUrl":null,"url":null,"abstract":"An UWB ground-coupled radar has been designed to operate from 460 MHz to beyond 4 GHz and essentially for civil engineering applications. Full-wave modeling using the FDTD approach has allowed to study in details the antenna radiation characteristics in air, in the presence of a soil and as a constituent in a bistatic GPR system. The polarization diversity in the E and H-planes is an important aspect which has been studied in order to further detect the orientation of damages (cracks or delaminations) in civil engineering structures. The analysis of the hyperbola signatures has allowed to evaluate the ability of the radar to detect small canonical buried objects.","PeriodicalId":257117,"journal":{"name":"2013 7th International Workshop on Advanced Ground Penetrating Radar","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of an UWB ground-coupled radar in the detection of discontinuities using polarization diversity: FDTD modeling and experiments\",\"authors\":\"F. Sagnard, Elias Tebchrany, V. Baltazart\",\"doi\":\"10.1109/IWAGPR.2013.6601534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An UWB ground-coupled radar has been designed to operate from 460 MHz to beyond 4 GHz and essentially for civil engineering applications. Full-wave modeling using the FDTD approach has allowed to study in details the antenna radiation characteristics in air, in the presence of a soil and as a constituent in a bistatic GPR system. The polarization diversity in the E and H-planes is an important aspect which has been studied in order to further detect the orientation of damages (cracks or delaminations) in civil engineering structures. The analysis of the hyperbola signatures has allowed to evaluate the ability of the radar to detect small canonical buried objects.\",\"PeriodicalId\":257117,\"journal\":{\"name\":\"2013 7th International Workshop on Advanced Ground Penetrating Radar\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 7th International Workshop on Advanced Ground Penetrating Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAGPR.2013.6601534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 7th International Workshop on Advanced Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2013.6601534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

超宽带地面耦合雷达的工作频率为460mhz至4ghz以上,主要用于土木工程应用。使用时域有限差分方法的全波建模可以详细研究天线在空气中、土壤中存在的辐射特性以及双基地探地雷达系统中的组成部分。E面和h面极化分异是土木工程结构损伤(裂缝或分层)方向检测研究的一个重要方面。通过对双曲线特征的分析,可以评估雷达探测小型标准埋地物体的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of an UWB ground-coupled radar in the detection of discontinuities using polarization diversity: FDTD modeling and experiments
An UWB ground-coupled radar has been designed to operate from 460 MHz to beyond 4 GHz and essentially for civil engineering applications. Full-wave modeling using the FDTD approach has allowed to study in details the antenna radiation characteristics in air, in the presence of a soil and as a constituent in a bistatic GPR system. The polarization diversity in the E and H-planes is an important aspect which has been studied in order to further detect the orientation of damages (cracks or delaminations) in civil engineering structures. The analysis of the hyperbola signatures has allowed to evaluate the ability of the radar to detect small canonical buried objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信