Baiq Devi Rachmawati
{"title":"Estimasi Parameter Regresi Linear Menggunakan Regresi Kuantil","authors":"Baiq Devi Rachmawati","doi":"10.29303/EMJ.V2I2.15","DOIUrl":null,"url":null,"abstract":"Regression analysis is a statistical analysis method for estimating the relationship between dependent variables (Y) and one or more independent variables (X) . As the purpose of this study is to theoretically examine the quantile regression method in estimating linear regression parameters. In regression analysis usually the method used to estimate parameters is the least square method with assumptions that must be met that normal assumption, homoskedasticity, no autocorrelation and non multicollinearity. Basically the least square method is sensitive to the assumptions of deviations in the data, so that the estimations results will be lees good if the assumptions are not fulfilled. Therefore, to overcome the limitations of the least square method developed a quantile regression method for estimating linear regression parameters. Based on the result of research that has been done shows that the estimation of linear regression parameters using the quantile regression method is obtained by minimazing the absolute number of errors through the simplex algorithm.","PeriodicalId":281429,"journal":{"name":"EIGEN MATHEMATICS JOURNAL","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIGEN MATHEMATICS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/EMJ.V2I2.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回归分析是估计因变量(Y)与一个或多个自变量(X)之间关系的统计分析方法。由于本研究的目的是从理论上检验分位数回归方法在估计线性回归参数中的应用。在回归分析中,估计参数的方法通常是最小二乘法,其假设条件为正态假设、均方差、无自相关和非多重共线性。基本上,最小二乘法对数据偏差的假设很敏感,所以如果不满足这些假设,估计结果也会很差。因此,为了克服最小二乘法的局限性,开发了一种分位数回归方法来估计线性回归参数。已有的研究结果表明,分位数回归法的线性回归参数估计是通过单纯形算法使误差绝对值最小化来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimasi Parameter Regresi Linear Menggunakan Regresi Kuantil
Regression analysis is a statistical analysis method for estimating the relationship between dependent variables (Y) and one or more independent variables (X) . As the purpose of this study is to theoretically examine the quantile regression method in estimating linear regression parameters. In regression analysis usually the method used to estimate parameters is the least square method with assumptions that must be met that normal assumption, homoskedasticity, no autocorrelation and non multicollinearity. Basically the least square method is sensitive to the assumptions of deviations in the data, so that the estimations results will be lees good if the assumptions are not fulfilled. Therefore, to overcome the limitations of the least square method developed a quantile regression method for estimating linear regression parameters. Based on the result of research that has been done shows that the estimation of linear regression parameters using the quantile regression method is obtained by minimazing the absolute number of errors through the simplex algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信