不确定可再生能源电网最优拓扑控制的混合整数分布鲁棒机会约束模型

Mostafa Nazemi, P. Dehghanian, M. Lejeune
{"title":"不确定可再生能源电网最优拓扑控制的混合整数分布鲁棒机会约束模型","authors":"Mostafa Nazemi, P. Dehghanian, M. Lejeune","doi":"10.1109/PTC.2019.8810440","DOIUrl":null,"url":null,"abstract":"This paper proposes a distributionally robust chance-constrained (DRCC) optimization model for optimal topology control in power grids overwhelmed with significant renewable uncertainties. A novel moment-based ambiguity set is characterized to capture the renewable uncertainties with no knowledge on the probability distributions of the random parameters. A distributionally robust optimization (DRO) formulation is proposed to guarantee the robustness of the network topology control plans against all uncertainty distributions defined within the moment-based ambiguity set. The proposed model minimizes the system operation cost by co-optimizing dispatch of the lower-cost generating units and network topology—i.e., dynamically harnessing the way how electricity flows through the system. In order to solve the problem, the DRCC problem are reformulated into a tractable mixed-integer second order cone programming problem (MISOCP) which can be efficiently solved by off-the-shelf solvers. Numerical results on the IEEE 118-bus test system verify the effectiveness of the proposed network reconfiguration methodology under uncertainties.","PeriodicalId":187144,"journal":{"name":"2019 IEEE Milan PowerTech","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Mixed-Integer Distributionally Robust Chance-Constrained Model for Optimal Topology Control in Power Grids with Uncertain Renewables\",\"authors\":\"Mostafa Nazemi, P. Dehghanian, M. Lejeune\",\"doi\":\"10.1109/PTC.2019.8810440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a distributionally robust chance-constrained (DRCC) optimization model for optimal topology control in power grids overwhelmed with significant renewable uncertainties. A novel moment-based ambiguity set is characterized to capture the renewable uncertainties with no knowledge on the probability distributions of the random parameters. A distributionally robust optimization (DRO) formulation is proposed to guarantee the robustness of the network topology control plans against all uncertainty distributions defined within the moment-based ambiguity set. The proposed model minimizes the system operation cost by co-optimizing dispatch of the lower-cost generating units and network topology—i.e., dynamically harnessing the way how electricity flows through the system. In order to solve the problem, the DRCC problem are reformulated into a tractable mixed-integer second order cone programming problem (MISOCP) which can be efficiently solved by off-the-shelf solvers. Numerical results on the IEEE 118-bus test system verify the effectiveness of the proposed network reconfiguration methodology under uncertainties.\",\"PeriodicalId\":187144,\"journal\":{\"name\":\"2019 IEEE Milan PowerTech\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Milan PowerTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PTC.2019.8810440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Milan PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2019.8810440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种分布式鲁棒机会约束(DRCC)优化模型,用于可再生能源不确定性较大的电网的最优拓扑控制。为了在不知道随机参数概率分布的情况下捕获可更新的不确定性,提出了一种新的基于矩的模糊集。提出了一种分布鲁棒优化(DRO)公式,以保证网络拓扑控制计划对矩基模糊集中定义的所有不确定性分布具有鲁棒性。该模型通过对低成本发电机组和网络拓扑的协同优化调度,使系统运行成本最小化。动态控制电流在系统中的流动方式。为了求解该问题,将DRCC问题转化为可处理的混合整数二阶锥规划问题(MISOCP),该问题可通过现成的求解器有效求解。在IEEE 118总线测试系统上的数值结果验证了所提出的网络重构方法在不确定条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mixed-Integer Distributionally Robust Chance-Constrained Model for Optimal Topology Control in Power Grids with Uncertain Renewables
This paper proposes a distributionally robust chance-constrained (DRCC) optimization model for optimal topology control in power grids overwhelmed with significant renewable uncertainties. A novel moment-based ambiguity set is characterized to capture the renewable uncertainties with no knowledge on the probability distributions of the random parameters. A distributionally robust optimization (DRO) formulation is proposed to guarantee the robustness of the network topology control plans against all uncertainty distributions defined within the moment-based ambiguity set. The proposed model minimizes the system operation cost by co-optimizing dispatch of the lower-cost generating units and network topology—i.e., dynamically harnessing the way how electricity flows through the system. In order to solve the problem, the DRCC problem are reformulated into a tractable mixed-integer second order cone programming problem (MISOCP) which can be efficiently solved by off-the-shelf solvers. Numerical results on the IEEE 118-bus test system verify the effectiveness of the proposed network reconfiguration methodology under uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信