具有偶指数的广义费马方程的解

R. F. Ryan
{"title":"具有偶指数的广义费马方程的解","authors":"R. F. Ryan","doi":"10.12988/imf.2019.9835","DOIUrl":null,"url":null,"abstract":"The equation x2m+y2n = z2r is considered for positive integer values of m, n, and r. If m, n, and r are not pairwise relatively prime, then there are no solutions to this equation in nonzero integers. Formulas that generate infinitely many solutions to this equation are given when m, n, and r are pairwise relatively prime; the newly discovered formulas tend to yield non-primitive solutions. Along the way, it is shown that x2 + y2n = z2n (or equivalently, z2n − y2n = x2) has no solutions in nonzero integers when n > 1. Mathematics Subject Classification: 11D41","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions to a generalized Fermat equation that has even exponents\",\"authors\":\"R. F. Ryan\",\"doi\":\"10.12988/imf.2019.9835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The equation x2m+y2n = z2r is considered for positive integer values of m, n, and r. If m, n, and r are not pairwise relatively prime, then there are no solutions to this equation in nonzero integers. Formulas that generate infinitely many solutions to this equation are given when m, n, and r are pairwise relatively prime; the newly discovered formulas tend to yield non-primitive solutions. Along the way, it is shown that x2 + y2n = z2n (or equivalently, z2n − y2n = x2) has no solutions in nonzero integers when n > 1. Mathematics Subject Classification: 11D41\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2019.9835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2019.9835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

方程x2m+y2n = z2r考虑m, n和r的正整数值。如果m, n和r不是成对相对素数,则该方程在非零整数中没有解。当m, n, r是两两相对素数时给出了生成这个方程无穷多个解的公式;新发现的公式往往产生非原始解。由此证明,当n > 1时,x2 + y2n = z2n(或等价地,z2n−y2n = x2)在非零整数中无解。数学学科分类:11D41
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions to a generalized Fermat equation that has even exponents
The equation x2m+y2n = z2r is considered for positive integer values of m, n, and r. If m, n, and r are not pairwise relatively prime, then there are no solutions to this equation in nonzero integers. Formulas that generate infinitely many solutions to this equation are given when m, n, and r are pairwise relatively prime; the newly discovered formulas tend to yield non-primitive solutions. Along the way, it is shown that x2 + y2n = z2n (or equivalently, z2n − y2n = x2) has no solutions in nonzero integers when n > 1. Mathematics Subject Classification: 11D41
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信