迈向大数据中的知识发现

Richard K. Lomotey, R. Deters
{"title":"迈向大数据中的知识发现","authors":"Richard K. Lomotey, R. Deters","doi":"10.1109/SOSE.2014.25","DOIUrl":null,"url":null,"abstract":"Analytics-as-a-Service (AaaS) has become indispensable because it affords stakeholders to discover knowledge in Big Data. Previously, data stored in data warehouses follow some schema and standardization which leads to efficient data mining. However, the Big Data epoch has witnessed the rise of structured, semi-structured, and unstructured data, a trend that motivated enterprises to employ the NoSQL data storages to accommodate the high-dimensional data. Unfortunately, the existing data mining techniques which are designed for schema-oriented storages are non-applicable to the unstructured data style. Thus, the AaaS though still in its infancy, is gaining widespread attention for its ability to provide novel ways and opportunities to mine the heterogeneous data. In this paper, we discuss our AaaS tool that performs terms and topics extraction and organization from unstructured data sources such as NoSQL databases, textual contents (e.g., websites), and structured sources (e.g. SQL). The tool is built on methodologies such as tagging, filtering, association maps, and adaptable dictionary. The evaluation of the tool shows high accuracy in the mining process.","PeriodicalId":360538,"journal":{"name":"2014 IEEE 8th International Symposium on Service Oriented System Engineering","volume":"26 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Towards Knowledge Discovery in Big Data\",\"authors\":\"Richard K. Lomotey, R. Deters\",\"doi\":\"10.1109/SOSE.2014.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analytics-as-a-Service (AaaS) has become indispensable because it affords stakeholders to discover knowledge in Big Data. Previously, data stored in data warehouses follow some schema and standardization which leads to efficient data mining. However, the Big Data epoch has witnessed the rise of structured, semi-structured, and unstructured data, a trend that motivated enterprises to employ the NoSQL data storages to accommodate the high-dimensional data. Unfortunately, the existing data mining techniques which are designed for schema-oriented storages are non-applicable to the unstructured data style. Thus, the AaaS though still in its infancy, is gaining widespread attention for its ability to provide novel ways and opportunities to mine the heterogeneous data. In this paper, we discuss our AaaS tool that performs terms and topics extraction and organization from unstructured data sources such as NoSQL databases, textual contents (e.g., websites), and structured sources (e.g. SQL). The tool is built on methodologies such as tagging, filtering, association maps, and adaptable dictionary. The evaluation of the tool shows high accuracy in the mining process.\",\"PeriodicalId\":360538,\"journal\":{\"name\":\"2014 IEEE 8th International Symposium on Service Oriented System Engineering\",\"volume\":\"26 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th International Symposium on Service Oriented System Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOSE.2014.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th International Symposium on Service Oriented System Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOSE.2014.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

分析即服务(AaaS)已经变得不可或缺,因为它为利益相关者提供了在大数据中发现知识的机会。以前,存储在数据仓库中的数据遵循一些模式和标准化,从而实现高效的数据挖掘。然而,大数据时代见证了结构化、半结构化和非结构化数据的兴起,这一趋势促使企业采用NoSQL数据存储来容纳高维数据。遗憾的是,现有的为面向模式存储设计的数据挖掘技术不适用于非结构化数据样式。因此,AaaS虽然仍处于起步阶段,但由于其提供挖掘异构数据的新方法和机会的能力而获得了广泛的关注。在本文中,我们讨论了我们的AaaS工具,该工具从非结构化数据源(如NoSQL数据库、文本内容(如网站)和结构化数据源(如SQL)中执行术语和主题的提取和组织。该工具建立在诸如标记、过滤、关联映射和适应性词典等方法的基础上。对该工具的评价表明,该工具在采矿过程中具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Knowledge Discovery in Big Data
Analytics-as-a-Service (AaaS) has become indispensable because it affords stakeholders to discover knowledge in Big Data. Previously, data stored in data warehouses follow some schema and standardization which leads to efficient data mining. However, the Big Data epoch has witnessed the rise of structured, semi-structured, and unstructured data, a trend that motivated enterprises to employ the NoSQL data storages to accommodate the high-dimensional data. Unfortunately, the existing data mining techniques which are designed for schema-oriented storages are non-applicable to the unstructured data style. Thus, the AaaS though still in its infancy, is gaining widespread attention for its ability to provide novel ways and opportunities to mine the heterogeneous data. In this paper, we discuss our AaaS tool that performs terms and topics extraction and organization from unstructured data sources such as NoSQL databases, textual contents (e.g., websites), and structured sources (e.g. SQL). The tool is built on methodologies such as tagging, filtering, association maps, and adaptable dictionary. The evaluation of the tool shows high accuracy in the mining process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信