不同动量技术在深度强化学习中的性能比较

Mehmet Sarigul, M. Avci
{"title":"不同动量技术在深度强化学习中的性能比较","authors":"Mehmet Sarigul, M. Avci","doi":"10.1109/INISTA.2017.8001175","DOIUrl":null,"url":null,"abstract":"Increase in popularity of deep convolutional neural networks in many different areas leads to increase in the use of these networks in reinforcement learning. Training a huge deep neural network structure by using simple gradient descent learning can take quite a long time. Some additional learning approaches should be utilized to solve this problem. One of these techniques is use of momentum which accelerates gradient descent learning. Although momentum techniques are mostly developed for supervised learning problems, it can also be used for reinforcement learning problems. However, its efficiency may vary due to the dissimilarities in two training learning processes. In this paper, the performances of different momentum techniques are compared for one of the reinforcement learning problems; Othello game benchmark. Test results show that the Nesterov accelerated momentum technique provided a more effective generalization on benchmark","PeriodicalId":314687,"journal":{"name":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance comparision of different momentum techniques on deep reinforcement learning\",\"authors\":\"Mehmet Sarigul, M. Avci\",\"doi\":\"10.1109/INISTA.2017.8001175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increase in popularity of deep convolutional neural networks in many different areas leads to increase in the use of these networks in reinforcement learning. Training a huge deep neural network structure by using simple gradient descent learning can take quite a long time. Some additional learning approaches should be utilized to solve this problem. One of these techniques is use of momentum which accelerates gradient descent learning. Although momentum techniques are mostly developed for supervised learning problems, it can also be used for reinforcement learning problems. However, its efficiency may vary due to the dissimilarities in two training learning processes. In this paper, the performances of different momentum techniques are compared for one of the reinforcement learning problems; Othello game benchmark. Test results show that the Nesterov accelerated momentum technique provided a more effective generalization on benchmark\",\"PeriodicalId\":314687,\"journal\":{\"name\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2017.8001175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2017.8001175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度卷积神经网络在许多不同领域的普及导致这些网络在强化学习中的使用增加。通过简单的梯度下降学习来训练一个巨大的深度神经网络结构可能会花费相当长的时间。应该利用一些额外的学习方法来解决这个问题。其中一种技术是使用动量来加速梯度下降学习。虽然动量技术主要是为监督学习问题开发的,但它也可以用于强化学习问题。然而,由于两种训练学习过程的不同,其效率可能会有所不同。本文针对一个强化学习问题,比较了不同动量技术的性能;奥赛罗游戏基准。测试结果表明,Nesterov加速动量技术在基准上提供了更有效的泛化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance comparision of different momentum techniques on deep reinforcement learning
Increase in popularity of deep convolutional neural networks in many different areas leads to increase in the use of these networks in reinforcement learning. Training a huge deep neural network structure by using simple gradient descent learning can take quite a long time. Some additional learning approaches should be utilized to solve this problem. One of these techniques is use of momentum which accelerates gradient descent learning. Although momentum techniques are mostly developed for supervised learning problems, it can also be used for reinforcement learning problems. However, its efficiency may vary due to the dissimilarities in two training learning processes. In this paper, the performances of different momentum techniques are compared for one of the reinforcement learning problems; Othello game benchmark. Test results show that the Nesterov accelerated momentum technique provided a more effective generalization on benchmark
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信