{"title":"核函数对磁图的影响及磁导航定位评价","authors":"Takumi Takebayashi, Renato Miyagusuku, K. Ozaki","doi":"10.1109/MFI49285.2020.9235259","DOIUrl":null,"url":null,"abstract":"Localization is one of the most fundamental requirements for the use of autonomous robots. In this work, we use magnetic-based localization; which, while not as accurate as laser rangefinder or camera-based systems, is not affected by a large number of people on its surrounding, making it ideal for applications where this is expected, such as service robotics in supermarkets, hotels, etc. Magnetic-based localization systems first create a magnetic map of the environment using magnetic samples acquired a priori. An approach for generating this map is to use collected data to training a Gaussian Process model. Gaussian Processes are non-parametric, data-drive models, where the most important design choice is the selection of an adequate kernel function. The purpose of this study is to improve the accuracy of the magnetic localization by testing several kernel functions and experimentally verifying its effects on robot localization.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"296 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Kernel Function to Magnetic Map and Evaluation of Localization of Magnetic Navigation\",\"authors\":\"Takumi Takebayashi, Renato Miyagusuku, K. Ozaki\",\"doi\":\"10.1109/MFI49285.2020.9235259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization is one of the most fundamental requirements for the use of autonomous robots. In this work, we use magnetic-based localization; which, while not as accurate as laser rangefinder or camera-based systems, is not affected by a large number of people on its surrounding, making it ideal for applications where this is expected, such as service robotics in supermarkets, hotels, etc. Magnetic-based localization systems first create a magnetic map of the environment using magnetic samples acquired a priori. An approach for generating this map is to use collected data to training a Gaussian Process model. Gaussian Processes are non-parametric, data-drive models, where the most important design choice is the selection of an adequate kernel function. The purpose of this study is to improve the accuracy of the magnetic localization by testing several kernel functions and experimentally verifying its effects on robot localization.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"296 1-2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Kernel Function to Magnetic Map and Evaluation of Localization of Magnetic Navigation
Localization is one of the most fundamental requirements for the use of autonomous robots. In this work, we use magnetic-based localization; which, while not as accurate as laser rangefinder or camera-based systems, is not affected by a large number of people on its surrounding, making it ideal for applications where this is expected, such as service robotics in supermarkets, hotels, etc. Magnetic-based localization systems first create a magnetic map of the environment using magnetic samples acquired a priori. An approach for generating this map is to use collected data to training a Gaussian Process model. Gaussian Processes are non-parametric, data-drive models, where the most important design choice is the selection of an adequate kernel function. The purpose of this study is to improve the accuracy of the magnetic localization by testing several kernel functions and experimentally verifying its effects on robot localization.