基于不同自有标签比例的分布式lstm学习

Timon Sachweh, Daniel Boiar, T. Liebig
{"title":"基于不同自有标签比例的分布式lstm学习","authors":"Timon Sachweh, Daniel Boiar, T. Liebig","doi":"10.1109/ICDMW58026.2022.00139","DOIUrl":null,"url":null,"abstract":"Data privacy and decentralised data collection has become more and more popular in recent years. In order to solve issues with privacy, communication bandwidth and learning from spatio-temporal data, we will propose two efficient models which use Differential Privacy and decentralized LSTM-Learning: One, in which a Long Short Term Memory (LSTM) model is learned for extracting local temporal node constraints and feeding them into a Dense-Layer (LabeIProportionToLocal). The other approach extends the first one by fetching histogram data from the neighbors and joining the information with the LSTM output (LabeIProportionToDense). For evaluation two popular datasets are used: Pems-Bay and METR-LA. Additionally, we provide an own dataset, which is based on LuST. The evaluation will show the tradeoff between performance and data privacy.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed LSTM-Learning from Differentially Private Label Proportions\",\"authors\":\"Timon Sachweh, Daniel Boiar, T. Liebig\",\"doi\":\"10.1109/ICDMW58026.2022.00139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data privacy and decentralised data collection has become more and more popular in recent years. In order to solve issues with privacy, communication bandwidth and learning from spatio-temporal data, we will propose two efficient models which use Differential Privacy and decentralized LSTM-Learning: One, in which a Long Short Term Memory (LSTM) model is learned for extracting local temporal node constraints and feeding them into a Dense-Layer (LabeIProportionToLocal). The other approach extends the first one by fetching histogram data from the neighbors and joining the information with the LSTM output (LabeIProportionToDense). For evaluation two popular datasets are used: Pems-Bay and METR-LA. Additionally, we provide an own dataset, which is based on LuST. The evaluation will show the tradeoff between performance and data privacy.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,数据隐私和分散的数据收集越来越受欢迎。为了解决隐私、通信带宽和从时空数据中学习的问题,我们将提出两种使用差分隐私和分散LSTM学习的高效模型:一种是学习长短期记忆(LSTM)模型,用于提取局部时间节点约束并将其馈送到致密层(LabeIProportionToLocal)。另一种方法是对第一种方法的扩展,从邻居中获取直方图数据,并将这些信息与LSTM输出(LabeIProportionToDense)连接起来。为了进行评估,使用了两个流行的数据集:Pems-Bay和metro - la。此外,我们提供了自己的数据集,该数据集基于LuST。评估将显示性能和数据隐私之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed LSTM-Learning from Differentially Private Label Proportions
Data privacy and decentralised data collection has become more and more popular in recent years. In order to solve issues with privacy, communication bandwidth and learning from spatio-temporal data, we will propose two efficient models which use Differential Privacy and decentralized LSTM-Learning: One, in which a Long Short Term Memory (LSTM) model is learned for extracting local temporal node constraints and feeding them into a Dense-Layer (LabeIProportionToLocal). The other approach extends the first one by fetching histogram data from the neighbors and joining the information with the LSTM output (LabeIProportionToDense). For evaluation two popular datasets are used: Pems-Bay and METR-LA. Additionally, we provide an own dataset, which is based on LuST. The evaluation will show the tradeoff between performance and data privacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信