{"title":"用于“健康状态”监测的Rb原子钟中的二次谐波信号","authors":"A. Hudson, J. Camparo","doi":"10.1109/FCS.2018.8597488","DOIUrl":null,"url":null,"abstract":"In the Rb atomic frequency standard (RAFS), the 2<sup>nd</sup>harmonic signal, S2, is routinely taken as a “Status-of-Health” indicator for the atomic signal. In part, this role for S<inf>2</inf>derives from the Quasi-Static Approximation (QSA), where harmonic signals are taken as proportional to derivatives of the static lineshape. However, clock operating conditions violate the assumptions of the QSA, and so justification of the relationship between S<inf>2</inf> and <tex>$\\text{dS}_{1}/\\mathrm{d}\\Delta\\vert_{\\Delta=0}$</tex> (i.e., the correction signal's slope on resonance) is questionable. To better understand S<inf>2</inf> and its potential as a status-of-health indicator, we are continuing a series of experiments begun in our laboratory. Here, we discuss the role of temperature gradients on S<inf>2</inf>, and the extent to which temperature gradients might or might not influence S<inf>2</inf>'s ability to monitor clock health.","PeriodicalId":180164,"journal":{"name":"2018 IEEE International Frequency Control Symposium (IFCS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The 2nd-Harmonic Signal in the Rb Atomic Clock for “Status-of-Health” Monitoring\",\"authors\":\"A. Hudson, J. Camparo\",\"doi\":\"10.1109/FCS.2018.8597488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Rb atomic frequency standard (RAFS), the 2<sup>nd</sup>harmonic signal, S2, is routinely taken as a “Status-of-Health” indicator for the atomic signal. In part, this role for S<inf>2</inf>derives from the Quasi-Static Approximation (QSA), where harmonic signals are taken as proportional to derivatives of the static lineshape. However, clock operating conditions violate the assumptions of the QSA, and so justification of the relationship between S<inf>2</inf> and <tex>$\\\\text{dS}_{1}/\\\\mathrm{d}\\\\Delta\\\\vert_{\\\\Delta=0}$</tex> (i.e., the correction signal's slope on resonance) is questionable. To better understand S<inf>2</inf> and its potential as a status-of-health indicator, we are continuing a series of experiments begun in our laboratory. Here, we discuss the role of temperature gradients on S<inf>2</inf>, and the extent to which temperature gradients might or might not influence S<inf>2</inf>'s ability to monitor clock health.\",\"PeriodicalId\":180164,\"journal\":{\"name\":\"2018 IEEE International Frequency Control Symposium (IFCS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Frequency Control Symposium (IFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2018.8597488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2018.8597488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The 2nd-Harmonic Signal in the Rb Atomic Clock for “Status-of-Health” Monitoring
In the Rb atomic frequency standard (RAFS), the 2ndharmonic signal, S2, is routinely taken as a “Status-of-Health” indicator for the atomic signal. In part, this role for S2derives from the Quasi-Static Approximation (QSA), where harmonic signals are taken as proportional to derivatives of the static lineshape. However, clock operating conditions violate the assumptions of the QSA, and so justification of the relationship between S2 and $\text{dS}_{1}/\mathrm{d}\Delta\vert_{\Delta=0}$ (i.e., the correction signal's slope on resonance) is questionable. To better understand S2 and its potential as a status-of-health indicator, we are continuing a series of experiments begun in our laboratory. Here, we discuss the role of temperature gradients on S2, and the extent to which temperature gradients might or might not influence S2's ability to monitor clock health.