Affymetrix微阵列数据的无监督阈值分割

M. Trotter, B. Buxton
{"title":"Affymetrix微阵列数据的无监督阈值分割","authors":"M. Trotter, B. Buxton","doi":"10.1109/ICCTA.2007.129","DOIUrl":null,"url":null,"abstract":"Unsupervised thresholding provides a data-driven alternative to manually-situated thresholds for those wishing to extract class structure from unlabelled data. The analysis of microarray data provides one such scenario, in which thresholds placed on the output of multiple hypothesis tests are the most common method of determining, for example, which genes of a genome-wide assay are expressed under different experimental conditions. The Affymetrix GeneChip microarray platform is a popular method of determining genome-wide gene expression. Here, we apply a well-known image segmentation algorithm to determine the simplest property inferred from Affymetrix microarray data $the detection of specific signal. The effective separation of specific and non-specific signal by an unsupervised thresholding algorithm demonstrates the potential of data-driven methods to complement and, in certain circumstances, replace manual thresholds in the analysis of this platform","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unsupervised Thresholding of Affymetrix Microarray Data\",\"authors\":\"M. Trotter, B. Buxton\",\"doi\":\"10.1109/ICCTA.2007.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised thresholding provides a data-driven alternative to manually-situated thresholds for those wishing to extract class structure from unlabelled data. The analysis of microarray data provides one such scenario, in which thresholds placed on the output of multiple hypothesis tests are the most common method of determining, for example, which genes of a genome-wide assay are expressed under different experimental conditions. The Affymetrix GeneChip microarray platform is a popular method of determining genome-wide gene expression. Here, we apply a well-known image segmentation algorithm to determine the simplest property inferred from Affymetrix microarray data $the detection of specific signal. The effective separation of specific and non-specific signal by an unsupervised thresholding algorithm demonstrates the potential of data-driven methods to complement and, in certain circumstances, replace manual thresholds in the analysis of this platform\",\"PeriodicalId\":308247,\"journal\":{\"name\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA.2007.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于那些希望从未标记的数据中提取类结构的人来说,无监督阈值为手动设置的阈值提供了数据驱动的替代方案。对微阵列数据的分析提供了这样一种情况,在这种情况下,对多个假设检验的输出设置阈值是最常用的确定方法,例如,确定全基因组测定的哪些基因在不同的实验条件下表达。Affymetrix基因芯片微阵列平台是测定全基因组基因表达的常用方法。在这里,我们应用一种著名的图像分割算法来确定从Affymetrix微阵列数据推断出的最简单的属性,以检测特定的信号。通过无监督阈值算法有效分离特定和非特定信号,证明了数据驱动方法在该平台分析中补充并在某些情况下取代手动阈值的潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Thresholding of Affymetrix Microarray Data
Unsupervised thresholding provides a data-driven alternative to manually-situated thresholds for those wishing to extract class structure from unlabelled data. The analysis of microarray data provides one such scenario, in which thresholds placed on the output of multiple hypothesis tests are the most common method of determining, for example, which genes of a genome-wide assay are expressed under different experimental conditions. The Affymetrix GeneChip microarray platform is a popular method of determining genome-wide gene expression. Here, we apply a well-known image segmentation algorithm to determine the simplest property inferred from Affymetrix microarray data $the detection of specific signal. The effective separation of specific and non-specific signal by an unsupervised thresholding algorithm demonstrates the potential of data-driven methods to complement and, in certain circumstances, replace manual thresholds in the analysis of this platform
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信