基于增强分类器和霍夫变换的超声图像胎儿器官自动检测与逼近

M. A. Ma'sum, W. Jatmiko, M. I. Tawakal, F. A. Afif
{"title":"基于增强分类器和霍夫变换的超声图像胎儿器官自动检测与逼近","authors":"M. A. Ma'sum, W. Jatmiko, M. I. Tawakal, F. A. Afif","doi":"10.1109/ICACSIS.2014.7065897","DOIUrl":null,"url":null,"abstract":"In this paper we proposed a system for automatic fetal detection and approximation in ultrasound image. We used Adaboost. MH based on Multi Stump Classifier to detect fetal organs in ultrasound. After fetal organ detected, it is approximated using Randomized Hough Transform. Experiments result show that mean accuracy of the fetal organs detection reaches 93.92% with mean kappa coefficient value reaches 0.854 and mean hamming error reaches 0.032. Proposed method has better performance compared to other five methods proposed in previous researches. Fetal Organ shape approximation performance reaches 81% for fetal head, 57% for fetal abdomen, 72% of fetal femur, and 66% of fetal humérus.","PeriodicalId":443250,"journal":{"name":"2014 International Conference on Advanced Computer Science and Information System","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic fetal organs detection and approximation in ultrasound image using boosting classifier and hough transform\",\"authors\":\"M. A. Ma'sum, W. Jatmiko, M. I. Tawakal, F. A. Afif\",\"doi\":\"10.1109/ICACSIS.2014.7065897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we proposed a system for automatic fetal detection and approximation in ultrasound image. We used Adaboost. MH based on Multi Stump Classifier to detect fetal organs in ultrasound. After fetal organ detected, it is approximated using Randomized Hough Transform. Experiments result show that mean accuracy of the fetal organs detection reaches 93.92% with mean kappa coefficient value reaches 0.854 and mean hamming error reaches 0.032. Proposed method has better performance compared to other five methods proposed in previous researches. Fetal Organ shape approximation performance reaches 81% for fetal head, 57% for fetal abdomen, 72% of fetal femur, and 66% of fetal humérus.\",\"PeriodicalId\":443250,\"journal\":{\"name\":\"2014 International Conference on Advanced Computer Science and Information System\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Advanced Computer Science and Information System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2014.7065897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Computer Science and Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2014.7065897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于超声图像的胎儿自动检测与逼近系统。我们使用Adaboost。基于多残端分类器的超声胎儿器官检测。胎儿器官检测后,用随机霍夫变换进行近似。实验结果表明,胎儿器官检测的平均准确率达到93.92%,平均kappa系数为0.854,平均hamming误差为0.032。与以往研究的其他五种方法相比,该方法具有更好的性能。胎儿器官形状近似性能:胎儿头部81%,胎儿腹部57%,胎儿股骨72%,胎儿人骨66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic fetal organs detection and approximation in ultrasound image using boosting classifier and hough transform
In this paper we proposed a system for automatic fetal detection and approximation in ultrasound image. We used Adaboost. MH based on Multi Stump Classifier to detect fetal organs in ultrasound. After fetal organ detected, it is approximated using Randomized Hough Transform. Experiments result show that mean accuracy of the fetal organs detection reaches 93.92% with mean kappa coefficient value reaches 0.854 and mean hamming error reaches 0.032. Proposed method has better performance compared to other five methods proposed in previous researches. Fetal Organ shape approximation performance reaches 81% for fetal head, 57% for fetal abdomen, 72% of fetal femur, and 66% of fetal humérus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信