R. Haselberg, B. Pirok, Andrea F. G. Gargano, Isabelle Kohler
{"title":"临床代谢组学:利用先进的分析技术扩大代谢组学的覆盖范围","authors":"R. Haselberg, B. Pirok, Andrea F. G. Gargano, Isabelle Kohler","doi":"10.56530/lcgc.eu.ry4267t3","DOIUrl":null,"url":null,"abstract":"This review article discusses the novel separation and detection strategies that are considered promising in clinical metabolomics to enhance the metabolome coverage. It includes hydrophilic interaction chromatography (HILIC), supercritical fluid chromatography (SFC), multidimensional LC approaches, as well as ion-mobility mass spectrometry (IM-MS) and data-independent acquisition (DIA) analysis methods.","PeriodicalId":402085,"journal":{"name":"LCGC Europe","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Clinical Metabolomics: Expanding the Metabolome Coverage Using Advanced Analytical Techniques\",\"authors\":\"R. Haselberg, B. Pirok, Andrea F. G. Gargano, Isabelle Kohler\",\"doi\":\"10.56530/lcgc.eu.ry4267t3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review article discusses the novel separation and detection strategies that are considered promising in clinical metabolomics to enhance the metabolome coverage. It includes hydrophilic interaction chromatography (HILIC), supercritical fluid chromatography (SFC), multidimensional LC approaches, as well as ion-mobility mass spectrometry (IM-MS) and data-independent acquisition (DIA) analysis methods.\",\"PeriodicalId\":402085,\"journal\":{\"name\":\"LCGC Europe\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LCGC Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56530/lcgc.eu.ry4267t3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LCGC Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56530/lcgc.eu.ry4267t3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clinical Metabolomics: Expanding the Metabolome Coverage Using Advanced Analytical Techniques
This review article discusses the novel separation and detection strategies that are considered promising in clinical metabolomics to enhance the metabolome coverage. It includes hydrophilic interaction chromatography (HILIC), supercritical fluid chromatography (SFC), multidimensional LC approaches, as well as ion-mobility mass spectrometry (IM-MS) and data-independent acquisition (DIA) analysis methods.