基于形状的三维模型检索的显著局部视觉特征

Ryutarou Ohbuchi, Kunio Osada, T. Furuya, T. Banno
{"title":"基于形状的三维模型检索的显著局部视觉特征","authors":"Ryutarou Ohbuchi, Kunio Osada, T. Furuya, T. Banno","doi":"10.1109/SMI.2008.4547955","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a shape-based 3D model retrieval method based on multi-scale local visual features. The features are extracted from 2D range images of the model viewed from uniformly sampled locations on a view sphere. The method is appearance-based, and accepts all the models that can be rendered as a range image. For each range image, a set of 2D multi-scale local visual features is computed by using the scale invariant feature transform [22] algorithm. To reduce cost of distance computation and feature storage, a set of local features describing a 3D model is integrated into a histogram using the bag-of-features approach. Our experiments using two standard benchmarks, one for articulated shapes and the other for rigid shapes, showed that the methods achieved the performance comparable or superior to some of the most powerful 3D shape retrieval methods.","PeriodicalId":118774,"journal":{"name":"2008 IEEE International Conference on Shape Modeling and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"300","resultStr":"{\"title\":\"Salient local visual features for shape-based 3D model retrieval\",\"authors\":\"Ryutarou Ohbuchi, Kunio Osada, T. Furuya, T. Banno\",\"doi\":\"10.1109/SMI.2008.4547955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a shape-based 3D model retrieval method based on multi-scale local visual features. The features are extracted from 2D range images of the model viewed from uniformly sampled locations on a view sphere. The method is appearance-based, and accepts all the models that can be rendered as a range image. For each range image, a set of 2D multi-scale local visual features is computed by using the scale invariant feature transform [22] algorithm. To reduce cost of distance computation and feature storage, a set of local features describing a 3D model is integrated into a histogram using the bag-of-features approach. Our experiments using two standard benchmarks, one for articulated shapes and the other for rigid shapes, showed that the methods achieved the performance comparable or superior to some of the most powerful 3D shape retrieval methods.\",\"PeriodicalId\":118774,\"journal\":{\"name\":\"2008 IEEE International Conference on Shape Modeling and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"300\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Shape Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMI.2008.4547955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Shape Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2008.4547955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 300

摘要

本文提出了一种基于多尺度局部视觉特征的基于形状的三维模型检索方法。这些特征是从视球上均匀采样位置观察到的模型的二维距离图像中提取的。该方法是基于外观的,并接受所有可以呈现为范围图像的模型。对于每个距离图像,使用尺度不变特征变换[22]算法计算一组二维多尺度局部视觉特征。为了减少距离计算和特征存储成本,使用特征袋方法将描述3D模型的一组局部特征集成到直方图中。我们使用两个标准基准(一个用于铰接形状,另一个用于刚性形状)进行的实验表明,该方法实现了与一些最强大的3D形状检索方法相当或优于的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Salient local visual features for shape-based 3D model retrieval
In this paper, we describe a shape-based 3D model retrieval method based on multi-scale local visual features. The features are extracted from 2D range images of the model viewed from uniformly sampled locations on a view sphere. The method is appearance-based, and accepts all the models that can be rendered as a range image. For each range image, a set of 2D multi-scale local visual features is computed by using the scale invariant feature transform [22] algorithm. To reduce cost of distance computation and feature storage, a set of local features describing a 3D model is integrated into a histogram using the bag-of-features approach. Our experiments using two standard benchmarks, one for articulated shapes and the other for rigid shapes, showed that the methods achieved the performance comparable or superior to some of the most powerful 3D shape retrieval methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信