双峰均匀场环隙谐振腔的有限元设计

M. Libersky, D. Silevitch, A. Kouki
{"title":"双峰均匀场环隙谐振腔的有限元设计","authors":"M. Libersky, D. Silevitch, A. Kouki","doi":"10.1109/COMPUMAG45669.2019.9032729","DOIUrl":null,"url":null,"abstract":"The loop-gap resonator (LGR) was originally developed to provide a uniform microwave magnetic field on a sample for electron spin resonance (ESR) experiments. The LGR is composed of one or more loops and gaps acting as inductances and capacitances respectively. Typical LGR designs produce a uniform field on a sample at a single resonant frequency, but for certain experiments it is necessary to study the response of a material to uniform fields at multiple frequencies applied simultaneously. In this work we develop an empirical design procedure using finite element method calculations to design an asymmetric loop-gap resonator with uniform fields at two frequencies in the same sample volume and analyze the field uniformity, frequency tunability and filling factors, providing comparison to a manufactured device.","PeriodicalId":317315,"journal":{"name":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of a loop-gap resonator with bimodal uniform fields using finite element analysis\",\"authors\":\"M. Libersky, D. Silevitch, A. Kouki\",\"doi\":\"10.1109/COMPUMAG45669.2019.9032729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The loop-gap resonator (LGR) was originally developed to provide a uniform microwave magnetic field on a sample for electron spin resonance (ESR) experiments. The LGR is composed of one or more loops and gaps acting as inductances and capacitances respectively. Typical LGR designs produce a uniform field on a sample at a single resonant frequency, but for certain experiments it is necessary to study the response of a material to uniform fields at multiple frequencies applied simultaneously. In this work we develop an empirical design procedure using finite element method calculations to design an asymmetric loop-gap resonator with uniform fields at two frequencies in the same sample volume and analyze the field uniformity, frequency tunability and filling factors, providing comparison to a manufactured device.\",\"PeriodicalId\":317315,\"journal\":{\"name\":\"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPUMAG45669.2019.9032729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPUMAG45669.2019.9032729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

环隙谐振器(LGR)最初是为了在电子自旋共振(ESR)实验中为样品提供均匀的微波磁场而开发的。LGR由一个或多个回路和间隙组成,回路和间隙分别充当电感和电容。典型的LGR设计在单个谐振频率下对样品产生均匀场,但在某些实验中,有必要研究材料对同时施加多个频率的均匀场的响应。在这项工作中,我们开发了一种使用有限元方法计算的经验设计程序,以设计在相同样本量下具有两个频率均匀场的非对称环隙谐振器,并分析了场均匀性,频率可调性和填充因子,并与制造设备进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a loop-gap resonator with bimodal uniform fields using finite element analysis
The loop-gap resonator (LGR) was originally developed to provide a uniform microwave magnetic field on a sample for electron spin resonance (ESR) experiments. The LGR is composed of one or more loops and gaps acting as inductances and capacitances respectively. Typical LGR designs produce a uniform field on a sample at a single resonant frequency, but for certain experiments it is necessary to study the response of a material to uniform fields at multiple frequencies applied simultaneously. In this work we develop an empirical design procedure using finite element method calculations to design an asymmetric loop-gap resonator with uniform fields at two frequencies in the same sample volume and analyze the field uniformity, frequency tunability and filling factors, providing comparison to a manufactured device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信