吉吉山语的FST形态学分析

C. Forbes, Garrett Nicolai, Miikka Silfverberg
{"title":"吉吉山语的FST形态学分析","authors":"C. Forbes, Garrett Nicolai, Miikka Silfverberg","doi":"10.18653/v1/2021.sigmorphon-1.21","DOIUrl":null,"url":null,"abstract":"This paper presents a finite-state morphological analyzer for the Gitksan language. The analyzer draws from a 1250-token Eastern dialect wordlist. It is based on finite-state technology and additionally includes two extensions which can provide analyses for out-of-vocabulary words: rules for generating predictable dialect variants, and a neural guesser component. The pre-neural analyzer, tested against interlinear-annotated texts from multiple dialects, achieves coverage of (75-81%), and maintains high precision (95-100%). The neural extension improves coverage at the cost of lowered precision.","PeriodicalId":187165,"journal":{"name":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An FST morphological analyzer for the Gitksan language\",\"authors\":\"C. Forbes, Garrett Nicolai, Miikka Silfverberg\",\"doi\":\"10.18653/v1/2021.sigmorphon-1.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a finite-state morphological analyzer for the Gitksan language. The analyzer draws from a 1250-token Eastern dialect wordlist. It is based on finite-state technology and additionally includes two extensions which can provide analyses for out-of-vocabulary words: rules for generating predictable dialect variants, and a neural guesser component. The pre-neural analyzer, tested against interlinear-annotated texts from multiple dialects, achieves coverage of (75-81%), and maintains high precision (95-100%). The neural extension improves coverage at the cost of lowered precision.\",\"PeriodicalId\":187165,\"journal\":{\"name\":\"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.sigmorphon-1.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.sigmorphon-1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种吉克山语的有限状态词形分析器。分析器从一个1250个符号的东方方言词表中提取。它基于有限状态技术,另外还包括两个扩展,可以提供对词汇外单词的分析:生成可预测方言变体的规则,以及一个神经猜测组件。通过对来自多种方言的行间注释文本进行测试,预神经分析仪的覆盖率达到(75-81%),并保持了较高的精度(95-100%)。神经扩展以降低精度为代价提高了覆盖范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An FST morphological analyzer for the Gitksan language
This paper presents a finite-state morphological analyzer for the Gitksan language. The analyzer draws from a 1250-token Eastern dialect wordlist. It is based on finite-state technology and additionally includes two extensions which can provide analyses for out-of-vocabulary words: rules for generating predictable dialect variants, and a neural guesser component. The pre-neural analyzer, tested against interlinear-annotated texts from multiple dialects, achieves coverage of (75-81%), and maintains high precision (95-100%). The neural extension improves coverage at the cost of lowered precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信