用混合整数半定规划求解化学图的谱隙最大化

Sona Pavlíková, D. Ševčovič
{"title":"用混合整数半定规划求解化学图的谱隙最大化","authors":"Sona Pavlíková, D. Ševčovič","doi":"10.7494/cmms.2016.4.0586","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the spectral gap of a weighted graph which is the difference between the smallest positive and largest negative eigenvalue of its adjacency matrix. Such a graph can represent e.g. a chemical organic molecule. Our goal is to construct a new graph by bridging two given weighted graphs over a bipartite graph. The aim is to maximize the spectral gap with respect to a bridging graph. To this end, we construct a mixed integer semidefinite program for maximization of the spectral gap and compute it numerically.","PeriodicalId":401877,"journal":{"name":"Computer Methods in Material Science","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Maximization of the Spectral Gap for Chemical Graphs by means of a Solution to a Mixed Integer Semidefinite Program\",\"authors\":\"Sona Pavlíková, D. Ševčovič\",\"doi\":\"10.7494/cmms.2016.4.0586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze the spectral gap of a weighted graph which is the difference between the smallest positive and largest negative eigenvalue of its adjacency matrix. Such a graph can represent e.g. a chemical organic molecule. Our goal is to construct a new graph by bridging two given weighted graphs over a bipartite graph. The aim is to maximize the spectral gap with respect to a bridging graph. To this end, we construct a mixed integer semidefinite program for maximization of the spectral gap and compute it numerically.\",\"PeriodicalId\":401877,\"journal\":{\"name\":\"Computer Methods in Material Science\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/cmms.2016.4.0586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/cmms.2016.4.0586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了加权图的谱间隙,即其邻接矩阵的最小正特征值与最大负特征值之差。这样的图可以表示例如一个化学有机分子。我们的目标是通过在二部图上桥接两个给定的加权图来构造一个新的图。目的是最大化相对于桥接图的谱间隙。为此,我们构造了一个谱隙最大化的混合整数半定规划,并进行了数值计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximization of the Spectral Gap for Chemical Graphs by means of a Solution to a Mixed Integer Semidefinite Program
In this paper we analyze the spectral gap of a weighted graph which is the difference between the smallest positive and largest negative eigenvalue of its adjacency matrix. Such a graph can represent e.g. a chemical organic molecule. Our goal is to construct a new graph by bridging two given weighted graphs over a bipartite graph. The aim is to maximize the spectral gap with respect to a bridging graph. To this end, we construct a mixed integer semidefinite program for maximization of the spectral gap and compute it numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信