{"title":"在低功耗蓝牙(BLE)室内距离估计中,套袋改进RSSI信号的校准","authors":"A. Maratea, Giuseppe Salvi, S. Gaglione","doi":"10.1109/SITIS.2019.00107","DOIUrl":null,"url":null,"abstract":"Originally conceived as proximity sensors, smart Bluetooth (Bluetooth Low Energy or BLE) beacons have been quickly adopted as inexpensive means to estimate distance of the transmitter from the receiver. Unfortunately the Received Signal Strength in unstable and produces such oscillations that right beyond a couple of meters the accurate estimation of distances becomes extremely challenging. In this paper, starting from a preprocessed RSSI vector of measurements, a Bootstrap Aggregating procedure is proposed to improve the calibration of RSSI signals. The proposed method, in combination with robust and non parametric statistics, reaches a sub-meter precision up to 6 meters of distance.","PeriodicalId":301876,"journal":{"name":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bagging to Improve the Calibration of RSSI Signals in Bluetooth Low Energy (BLE) Indoor Distance Estimation\",\"authors\":\"A. Maratea, Giuseppe Salvi, S. Gaglione\",\"doi\":\"10.1109/SITIS.2019.00107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Originally conceived as proximity sensors, smart Bluetooth (Bluetooth Low Energy or BLE) beacons have been quickly adopted as inexpensive means to estimate distance of the transmitter from the receiver. Unfortunately the Received Signal Strength in unstable and produces such oscillations that right beyond a couple of meters the accurate estimation of distances becomes extremely challenging. In this paper, starting from a preprocessed RSSI vector of measurements, a Bootstrap Aggregating procedure is proposed to improve the calibration of RSSI signals. The proposed method, in combination with robust and non parametric statistics, reaches a sub-meter precision up to 6 meters of distance.\",\"PeriodicalId\":301876,\"journal\":{\"name\":\"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2019.00107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2019.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bagging to Improve the Calibration of RSSI Signals in Bluetooth Low Energy (BLE) Indoor Distance Estimation
Originally conceived as proximity sensors, smart Bluetooth (Bluetooth Low Energy or BLE) beacons have been quickly adopted as inexpensive means to estimate distance of the transmitter from the receiver. Unfortunately the Received Signal Strength in unstable and produces such oscillations that right beyond a couple of meters the accurate estimation of distances becomes extremely challenging. In this paper, starting from a preprocessed RSSI vector of measurements, a Bootstrap Aggregating procedure is proposed to improve the calibration of RSSI signals. The proposed method, in combination with robust and non parametric statistics, reaches a sub-meter precision up to 6 meters of distance.