奇异值分解与k均值聚类相结合的Twitter话题检测方法

Khumaisa Nur'Aini, Ibtisami Najahaty, Lina Hidayati, H. Murfi, S. Nurrohmah
{"title":"奇异值分解与k均值聚类相结合的Twitter话题检测方法","authors":"Khumaisa Nur'Aini, Ibtisami Najahaty, Lina Hidayati, H. Murfi, S. Nurrohmah","doi":"10.1109/ICACSIS.2015.7415168","DOIUrl":null,"url":null,"abstract":"Online social media are growing very rapidly in recent years, such as Twitter. Even the interaction and communication in the social media can reflect on the events of the real world. This causes the value of the information increasing significantly. However, the huge amount of the information requires a method of automatically detecting topics, one of which is the K-means Clustering. Moreover, the large dimensions of data become obstacles. So, we used singular value decomposition (SVD) to reduce the dimension of the data prior to the learning process using the K-means Clustering. The accuracy of the combination of SVD and K-means Clustering methods showed comparative results, while the computation time required is likely to be faster than the method of K-means Clustering without any reduction in advance.","PeriodicalId":325539,"journal":{"name":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"38 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Combination of singular value decomposition and K-means clustering methods for topic detection on Twitter\",\"authors\":\"Khumaisa Nur'Aini, Ibtisami Najahaty, Lina Hidayati, H. Murfi, S. Nurrohmah\",\"doi\":\"10.1109/ICACSIS.2015.7415168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online social media are growing very rapidly in recent years, such as Twitter. Even the interaction and communication in the social media can reflect on the events of the real world. This causes the value of the information increasing significantly. However, the huge amount of the information requires a method of automatically detecting topics, one of which is the K-means Clustering. Moreover, the large dimensions of data become obstacles. So, we used singular value decomposition (SVD) to reduce the dimension of the data prior to the learning process using the K-means Clustering. The accuracy of the combination of SVD and K-means Clustering methods showed comparative results, while the computation time required is likely to be faster than the method of K-means Clustering without any reduction in advance.\",\"PeriodicalId\":325539,\"journal\":{\"name\":\"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"38 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2015.7415168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2015.7415168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

近年来,在线社交媒体发展非常迅速,比如Twitter。即使是社交媒体上的互动和交流,也可以反映现实世界的事件。这导致信息的价值显著增加。然而,海量的信息需要一种自动检测主题的方法,其中一种方法就是K-means聚类。此外,数据的大维度也成为障碍。因此,我们使用奇异值分解(SVD)在使用K-means聚类学习过程之前降低数据的维数。SVD与K-means聚类方法相结合的准确率比较好,但所需的计算时间可能比K-means聚类方法更快,且没有提前降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combination of singular value decomposition and K-means clustering methods for topic detection on Twitter
Online social media are growing very rapidly in recent years, such as Twitter. Even the interaction and communication in the social media can reflect on the events of the real world. This causes the value of the information increasing significantly. However, the huge amount of the information requires a method of automatically detecting topics, one of which is the K-means Clustering. Moreover, the large dimensions of data become obstacles. So, we used singular value decomposition (SVD) to reduce the dimension of the data prior to the learning process using the K-means Clustering. The accuracy of the combination of SVD and K-means Clustering methods showed comparative results, while the computation time required is likely to be faster than the method of K-means Clustering without any reduction in advance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信