基于深度学习(FRDLS)的人脸识别系统支持电子考试的报名和监督程序

A. Amin
{"title":"基于深度学习(FRDLS)的人脸识别系统支持电子考试的报名和监督程序","authors":"A. Amin","doi":"10.21608/ijicis.2020.23149.1015","DOIUrl":null,"url":null,"abstract":"The novelty of this paper is represented in using some artificial intelligence techniques in the entry control to the electronic exams (E-exam) in addition to monitoring students and distinguish the situation they are during the E-exam. Therefore, the proposed system divides into two main parts, the first part to support Eexams to handle some of the weaknesses points such as validation from students' entry by using deep learning. The Self-Organized Maps (SOM) neural network was used to recognition on students' faces. SOM is characterized by its efficient for faces' image data management, as well as it's the closest technique to match inputted untrained faces' images with a database of trained faces' images accurately. On the other part, the Bag of Words model (BoWM) is used to discriminate the status of students during the exam process. The BoWM is based on Speeded-Up Robust Features (SURF) that building on the strengths of the leading existing detectors and descriptors by using a Hessian matrix. Then extracts a report showing the status of the student such as confusion, concentration, cheating ... etc. From the experimental results, the proposed system was verified images of students' faces with high accuracy and execution time have a significant indication. Determining the status of the student during the exam by adopting the technique of retrieving documents known as the bag of word model, which proved the accuracy of determining the status of the student arrived in some cases to 100%.","PeriodicalId":244591,"journal":{"name":"International Journal of Intelligent Computing and Information Sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Face Recognition System Based on Deep Learning (FRDLS) to Support the Entry and Supervision Procedures on Electronic Exams\",\"authors\":\"A. Amin\",\"doi\":\"10.21608/ijicis.2020.23149.1015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novelty of this paper is represented in using some artificial intelligence techniques in the entry control to the electronic exams (E-exam) in addition to monitoring students and distinguish the situation they are during the E-exam. Therefore, the proposed system divides into two main parts, the first part to support Eexams to handle some of the weaknesses points such as validation from students' entry by using deep learning. The Self-Organized Maps (SOM) neural network was used to recognition on students' faces. SOM is characterized by its efficient for faces' image data management, as well as it's the closest technique to match inputted untrained faces' images with a database of trained faces' images accurately. On the other part, the Bag of Words model (BoWM) is used to discriminate the status of students during the exam process. The BoWM is based on Speeded-Up Robust Features (SURF) that building on the strengths of the leading existing detectors and descriptors by using a Hessian matrix. Then extracts a report showing the status of the student such as confusion, concentration, cheating ... etc. From the experimental results, the proposed system was verified images of students' faces with high accuracy and execution time have a significant indication. Determining the status of the student during the exam by adopting the technique of retrieving documents known as the bag of word model, which proved the accuracy of determining the status of the student arrived in some cases to 100%.\",\"PeriodicalId\":244591,\"journal\":{\"name\":\"International Journal of Intelligent Computing and Information Sciences\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Computing and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/ijicis.2020.23149.1015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ijicis.2020.23149.1015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的新颖之处在于将人工智能技术应用于电子考试的进入控制中,并对学生进行监控和区分他们在电子考试中的情况。因此,提出的系统分为两个主要部分,第一部分支持电子考试,通过使用深度学习来处理一些弱点点,如学生入学验证。采用自组织地图(SOM)神经网络对学生面部进行识别。SOM对人脸图像数据的管理效率高,是将输入的未经训练的人脸图像与训练后的人脸数据库进行精确匹配的最接近的技术。另一方面,使用词汇袋模型(BoWM)来区分学生在考试过程中的地位。BoWM基于加速鲁棒特性(SURF),该特性通过使用Hessian矩阵建立在现有领先的检测器和描述符的优势上。然后摘录一份报告,显示学生的状态,如困惑、注意力集中、作弊……等。从实验结果来看,所提出的系统被验证具有较高的学生人脸图像识别精度和执行时间的显著指示性。在考试过程中,通过采用被称为单词包模型的检索文档技术来确定学生的状态,在某些情况下,确定学生状态的准确率达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Face Recognition System Based on Deep Learning (FRDLS) to Support the Entry and Supervision Procedures on Electronic Exams
The novelty of this paper is represented in using some artificial intelligence techniques in the entry control to the electronic exams (E-exam) in addition to monitoring students and distinguish the situation they are during the E-exam. Therefore, the proposed system divides into two main parts, the first part to support Eexams to handle some of the weaknesses points such as validation from students' entry by using deep learning. The Self-Organized Maps (SOM) neural network was used to recognition on students' faces. SOM is characterized by its efficient for faces' image data management, as well as it's the closest technique to match inputted untrained faces' images with a database of trained faces' images accurately. On the other part, the Bag of Words model (BoWM) is used to discriminate the status of students during the exam process. The BoWM is based on Speeded-Up Robust Features (SURF) that building on the strengths of the leading existing detectors and descriptors by using a Hessian matrix. Then extracts a report showing the status of the student such as confusion, concentration, cheating ... etc. From the experimental results, the proposed system was verified images of students' faces with high accuracy and execution time have a significant indication. Determining the status of the student during the exam by adopting the technique of retrieving documents known as the bag of word model, which proved the accuracy of determining the status of the student arrived in some cases to 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信