基于高斯-埃尔米特矩的车牌字符识别

Xiaojuan Ma, Renlong Pan, Lin Wang
{"title":"基于高斯-埃尔米特矩的车牌字符识别","authors":"Xiaojuan Ma, Renlong Pan, Lin Wang","doi":"10.1109/ETCS.2010.591","DOIUrl":null,"url":null,"abstract":"Character recognition plays an important role in the automatic license plate recognition (ALPR) system. In this paper, we propose a new method to recognize the license plates characters by using 2D Gaussian-Hermite moments (GHMs) of different orders with 231 GHMs features as the input vector of BP neural network. The system worked under variable illumination, variable size of plate and dynamic backgrounds. The experimental results demonstrate robust and efficient of our method.","PeriodicalId":193276,"journal":{"name":"2010 Second International Workshop on Education Technology and Computer Science","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"License Plate Character Recognition Based on Gaussian-Hermite Moments\",\"authors\":\"Xiaojuan Ma, Renlong Pan, Lin Wang\",\"doi\":\"10.1109/ETCS.2010.591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Character recognition plays an important role in the automatic license plate recognition (ALPR) system. In this paper, we propose a new method to recognize the license plates characters by using 2D Gaussian-Hermite moments (GHMs) of different orders with 231 GHMs features as the input vector of BP neural network. The system worked under variable illumination, variable size of plate and dynamic backgrounds. The experimental results demonstrate robust and efficient of our method.\",\"PeriodicalId\":193276,\"journal\":{\"name\":\"2010 Second International Workshop on Education Technology and Computer Science\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Workshop on Education Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCS.2010.591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Workshop on Education Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCS.2010.591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

字符识别在车牌自动识别系统中起着重要的作用。本文提出了一种新的车牌字符识别方法,该方法采用二维不同阶数的高斯-埃尔米矩(ghm)作为BP神经网络的输入向量,以231个高斯-埃尔米矩为特征。该系统可在可变光照、可变板尺寸和动态背景下工作。实验结果证明了该方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
License Plate Character Recognition Based on Gaussian-Hermite Moments
Character recognition plays an important role in the automatic license plate recognition (ALPR) system. In this paper, we propose a new method to recognize the license plates characters by using 2D Gaussian-Hermite moments (GHMs) of different orders with 231 GHMs features as the input vector of BP neural network. The system worked under variable illumination, variable size of plate and dynamic backgrounds. The experimental results demonstrate robust and efficient of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信