自适应分数间隔盲均衡

I. Fijalkow, F.L. de Victoria, C. R. Johnson
{"title":"自适应分数间隔盲均衡","authors":"I. Fijalkow, F.L. de Victoria, C. R. Johnson","doi":"10.1109/DSP.1994.379828","DOIUrl":null,"url":null,"abstract":"The asymptotic behavior of the FSE-CMA (i.e., fractionally spaced equalizer adapted by the Godard algorithm) is studied. Under conditions on the channel and equalizer finite length that are known to allow perfect equalization, the authors show that the FSE-CMA cost-function admits only global maxima, global minima and saddle points. However, the set of global minima contains dense sets of infinite extent which can lead to numerical overflow.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Adaptive fractionally spaced blind equalization\",\"authors\":\"I. Fijalkow, F.L. de Victoria, C. R. Johnson\",\"doi\":\"10.1109/DSP.1994.379828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The asymptotic behavior of the FSE-CMA (i.e., fractionally spaced equalizer adapted by the Godard algorithm) is studied. Under conditions on the channel and equalizer finite length that are known to allow perfect equalization, the authors show that the FSE-CMA cost-function admits only global maxima, global minima and saddle points. However, the set of global minima contains dense sets of infinite extent which can lead to numerical overflow.<<ETX>>\",\"PeriodicalId\":189083,\"journal\":{\"name\":\"Proceedings of IEEE 6th Digital Signal Processing Workshop\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 6th Digital Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSP.1994.379828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

研究了FSE-CMA的渐近特性(即采用戈达尔算法的分数间隔均衡器)。在已知信道和均衡器长度有限的条件下允许完全均衡,证明了FSE-CMA代价函数只允许全局最大值、全局最小值和鞍点。然而,全局最小值集包含了无限范围的密集集,这可能导致数值溢出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive fractionally spaced blind equalization
The asymptotic behavior of the FSE-CMA (i.e., fractionally spaced equalizer adapted by the Godard algorithm) is studied. Under conditions on the channel and equalizer finite length that are known to allow perfect equalization, the authors show that the FSE-CMA cost-function admits only global maxima, global minima and saddle points. However, the set of global minima contains dense sets of infinite extent which can lead to numerical overflow.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信