基于句子转换模型的英越语跨语言语义文本相似度研究

K. H. Nguyen, Dat Cong Dinh, Hang Le, Dinh Dien
{"title":"基于句子转换模型的英越语跨语言语义文本相似度研究","authors":"K. H. Nguyen, Dat Cong Dinh, Hang Le, Dinh Dien","doi":"10.1109/KSE56063.2022.9953781","DOIUrl":null,"url":null,"abstract":"Cross-lingual Semantic Textual Similarity (STS) is a challenging problem in Natural Language Understanding tasks, especially for low-resource languages like Vietnamese. Currently, one of the state-of-the-art approaches for this problem is to use distilled multilingual Sentence Transformer model. However, there are few studies on how these models work for English-Vietnamese language pairs. In this paper, we aim to inspect the performance of these models in the English-Vietnamese STS tasks. From our findings, we will propose possible improvements for this approach in the future.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"English-Vietnamese Cross-lingual Semantic Textual Similarity using Sentence Transformer model\",\"authors\":\"K. H. Nguyen, Dat Cong Dinh, Hang Le, Dinh Dien\",\"doi\":\"10.1109/KSE56063.2022.9953781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-lingual Semantic Textual Similarity (STS) is a challenging problem in Natural Language Understanding tasks, especially for low-resource languages like Vietnamese. Currently, one of the state-of-the-art approaches for this problem is to use distilled multilingual Sentence Transformer model. However, there are few studies on how these models work for English-Vietnamese language pairs. In this paper, we aim to inspect the performance of these models in the English-Vietnamese STS tasks. From our findings, we will propose possible improvements for this approach in the future.\",\"PeriodicalId\":330865,\"journal\":{\"name\":\"2022 14th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE56063.2022.9953781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跨语言语义文本相似度(STS)是自然语言理解任务中的一个具有挑战性的问题,特别是对于像越南语这样的低资源语言。目前,解决这一问题的最先进的方法之一是使用蒸馏的多语言句子转换器模型。然而,关于这些模型如何适用于英语-越南语对的研究很少。在本文中,我们旨在检验这些模型在英语-越南语STS任务中的表现。根据我们的发现,我们将在未来对这种方法提出可能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
English-Vietnamese Cross-lingual Semantic Textual Similarity using Sentence Transformer model
Cross-lingual Semantic Textual Similarity (STS) is a challenging problem in Natural Language Understanding tasks, especially for low-resource languages like Vietnamese. Currently, one of the state-of-the-art approaches for this problem is to use distilled multilingual Sentence Transformer model. However, there are few studies on how these models work for English-Vietnamese language pairs. In this paper, we aim to inspect the performance of these models in the English-Vietnamese STS tasks. From our findings, we will propose possible improvements for this approach in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信