{"title":"基于物理辅助深度学习框架的短时间窗逆变感应电机诊断","authors":"S. Kandukuri, H. Van Khang, K. Robbersmyr","doi":"10.1109/DEMPED.2019.8864889","DOIUrl":null,"url":null,"abstract":"This article presents a framework for accurate fault diagnostics in inverter-fed induction machinery operating under variable speed and load conditions within very short time windows. Condition indicators based on fault characteristic frequencies observed over the extended Park's vector modulus are fused with deep features extracted using stacked autoencoders to generate a multidimensional feature space for fault classification using support vector machine. The proposed approach is demonstrated in a laboratory setup to detect the most commonly occurring faults, namely, the stator turns fault, broken rotor bars fault and bearing fault with an accuracy > 98% within a short time window of 2–3 seconds.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of inverter-fed induction motors in short time windows using physics-assisted deep learning framework\",\"authors\":\"S. Kandukuri, H. Van Khang, K. Robbersmyr\",\"doi\":\"10.1109/DEMPED.2019.8864889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a framework for accurate fault diagnostics in inverter-fed induction machinery operating under variable speed and load conditions within very short time windows. Condition indicators based on fault characteristic frequencies observed over the extended Park's vector modulus are fused with deep features extracted using stacked autoencoders to generate a multidimensional feature space for fault classification using support vector machine. The proposed approach is demonstrated in a laboratory setup to detect the most commonly occurring faults, namely, the stator turns fault, broken rotor bars fault and bearing fault with an accuracy > 98% within a short time window of 2–3 seconds.\",\"PeriodicalId\":397001,\"journal\":{\"name\":\"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2019.8864889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diagnosis of inverter-fed induction motors in short time windows using physics-assisted deep learning framework
This article presents a framework for accurate fault diagnostics in inverter-fed induction machinery operating under variable speed and load conditions within very short time windows. Condition indicators based on fault characteristic frequencies observed over the extended Park's vector modulus are fused with deep features extracted using stacked autoencoders to generate a multidimensional feature space for fault classification using support vector machine. The proposed approach is demonstrated in a laboratory setup to detect the most commonly occurring faults, namely, the stator turns fault, broken rotor bars fault and bearing fault with an accuracy > 98% within a short time window of 2–3 seconds.