农业中的数字技术:一种基于微量元素污染土壤的作物生产力建模方法

C. Nurzhanov, L. Naizabayeva, T. Mazakov
{"title":"农业中的数字技术:一种基于微量元素污染土壤的作物生产力建模方法","authors":"C. Nurzhanov, L. Naizabayeva, T. Mazakov","doi":"10.1109/SIST58284.2023.10223574","DOIUrl":null,"url":null,"abstract":"The article focuses on the use of climate data in modelling crop productivity and highlights the im-portance of continuous incoming meteorological infor-mation in predicting crop yields. The purpose of Article is to evaluate the challenges and potential of utilizing big data using climate data as an ex-ample for modelling crop productivity on contaminated sites with trace elements. The “MiscanCalc” and “Group Method of Data Han-dling” were developed to predict crop yields on soils con-taminated with toxic elements using meteorological data. These models evaluate the impact of climate data on bio-mass production, ripening and harvest periods, estimate future crop yields, and identify the predictors that have the greatest influence on these indicators.","PeriodicalId":367406,"journal":{"name":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Technology in Agriculture: An Approach to Modelling Crop Productivity on Trace Elements Contaminated Soil\",\"authors\":\"C. Nurzhanov, L. Naizabayeva, T. Mazakov\",\"doi\":\"10.1109/SIST58284.2023.10223574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article focuses on the use of climate data in modelling crop productivity and highlights the im-portance of continuous incoming meteorological infor-mation in predicting crop yields. The purpose of Article is to evaluate the challenges and potential of utilizing big data using climate data as an ex-ample for modelling crop productivity on contaminated sites with trace elements. The “MiscanCalc” and “Group Method of Data Han-dling” were developed to predict crop yields on soils con-taminated with toxic elements using meteorological data. These models evaluate the impact of climate data on bio-mass production, ripening and harvest periods, estimate future crop yields, and identify the predictors that have the greatest influence on these indicators.\",\"PeriodicalId\":367406,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"volume\":\"268 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIST58284.2023.10223574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST58284.2023.10223574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文重点介绍了气候数据在作物产量建模中的应用,并强调了连续传入的气象信息在预测作物产量方面的重要性。本文的目的是评估利用大数据的挑战和潜力,以气候数据为例,对受微量元素污染地点的作物生产力进行建模。开发了“miscanalc”和“数据处理组方法”,利用气象数据预测受有毒元素污染土壤的作物产量。这些模型评估气候数据对生物批量生产、成熟和收获期的影响,估计未来作物产量,并确定对这些指标影响最大的预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital Technology in Agriculture: An Approach to Modelling Crop Productivity on Trace Elements Contaminated Soil
The article focuses on the use of climate data in modelling crop productivity and highlights the im-portance of continuous incoming meteorological infor-mation in predicting crop yields. The purpose of Article is to evaluate the challenges and potential of utilizing big data using climate data as an ex-ample for modelling crop productivity on contaminated sites with trace elements. The “MiscanCalc” and “Group Method of Data Han-dling” were developed to predict crop yields on soils con-taminated with toxic elements using meteorological data. These models evaluate the impact of climate data on bio-mass production, ripening and harvest periods, estimate future crop yields, and identify the predictors that have the greatest influence on these indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信