VLDB可扩展数据科学类别

Arun C. S. Kumar
{"title":"VLDB可扩展数据科学类别","authors":"Arun C. S. Kumar","doi":"10.1145/3572751.3572769","DOIUrl":null,"url":null,"abstract":"As part of the International Conference on Very Large Data Bases (VLDB) 2021 / Proceedings of the VLDB Endowment Volume 14, a new Research Track category named Scalable Data Science (SDS) was launched [2, 6]. The goal of SDS is to attract cutting-edge and impactful real-world work in the scalable data science arena to enhance the impact and visibility of the VLDB community on data science practice, spur new technical connections, and inspire new follow-on research. The inaugural year proved to be successful, with numerous interesting papers from a wide cross section of both industry and academia, spanning several data science topics, and originating from several countries around the world. In this report, we reflect on the inaugural year of SDS with some statistics on both submissions and accepted papers, SDS invited talks, and our observations, lessons, and tips as inaugural Associate Editors for SDS. We hope this article is helpful to future authors, reviewers, and organizers of SDS, as well as other interested members of the wider database / data management community and beyond.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"336 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VLDB Scalable Data Science Category\",\"authors\":\"Arun C. S. Kumar\",\"doi\":\"10.1145/3572751.3572769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of the International Conference on Very Large Data Bases (VLDB) 2021 / Proceedings of the VLDB Endowment Volume 14, a new Research Track category named Scalable Data Science (SDS) was launched [2, 6]. The goal of SDS is to attract cutting-edge and impactful real-world work in the scalable data science arena to enhance the impact and visibility of the VLDB community on data science practice, spur new technical connections, and inspire new follow-on research. The inaugural year proved to be successful, with numerous interesting papers from a wide cross section of both industry and academia, spanning several data science topics, and originating from several countries around the world. In this report, we reflect on the inaugural year of SDS with some statistics on both submissions and accepted papers, SDS invited talks, and our observations, lessons, and tips as inaugural Associate Editors for SDS. We hope this article is helpful to future authors, reviewers, and organizers of SDS, as well as other interested members of the wider database / data management community and beyond.\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"336 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3572751.3572769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572751.3572769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为超大型数据库国际会议(VLDB) 2021 / VLDB捐赠文集第14卷的一部分,推出了一个名为可扩展数据科学(SDS)的新研究轨道类别[2,6]。SDS的目标是在可扩展的数据科学领域吸引前沿和有影响力的现实世界工作,以增强VLDB社区对数据科学实践的影响和可见性,促进新的技术联系,并激发新的后续研究。首届大会是成功的,来自工业界和学术界的许多有趣的论文,涵盖了几个数据科学主题,来自世界各地的几个国家。在这份报告中,我们回顾了SDS的第一年,包括提交和接受的论文的一些统计数据,SDS邀请的演讲,以及我们作为SDS首任副编辑的观察、教训和建议。我们希望本文对未来的作者、审稿人和SDS的组织者,以及更广泛的数据库/数据管理社区的其他感兴趣的成员有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VLDB Scalable Data Science Category
As part of the International Conference on Very Large Data Bases (VLDB) 2021 / Proceedings of the VLDB Endowment Volume 14, a new Research Track category named Scalable Data Science (SDS) was launched [2, 6]. The goal of SDS is to attract cutting-edge and impactful real-world work in the scalable data science arena to enhance the impact and visibility of the VLDB community on data science practice, spur new technical connections, and inspire new follow-on research. The inaugural year proved to be successful, with numerous interesting papers from a wide cross section of both industry and academia, spanning several data science topics, and originating from several countries around the world. In this report, we reflect on the inaugural year of SDS with some statistics on both submissions and accepted papers, SDS invited talks, and our observations, lessons, and tips as inaugural Associate Editors for SDS. We hope this article is helpful to future authors, reviewers, and organizers of SDS, as well as other interested members of the wider database / data management community and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信