粉煤灰fİneness对硫酸盐抗性的影响

H. Eker, Demet Demir Şahin, M. Çullu
{"title":"粉煤灰fİneness对硫酸盐抗性的影响","authors":"H. Eker, Demet Demir Şahin, M. Çullu","doi":"10.54365/adyumbd.1053376","DOIUrl":null,"url":null,"abstract":"Sulphate corrosion occurs due to a chemical reaction between the hydration of cement, which is a concrete compound, and sulphate ions, resulting in deterioration in concrete. Pozzuolanas such as fly ash are used instead of cement to reduce or minimize damage caused by sulphate on concrete. This study uses fly ash tailings from Afsin Elbistan thermal power plant, which has a component close to cement instead of cement, which is one of the main components of concrete. Examples of different fineness obtained by grinding the fly ash (FA) in the ball mill for 0, 10 and 20 minutes were prepared with a FA substitution rate of 10%, creating examples of fly ash-added concrete. These examples were then exposed to a 10% and 5% additive sulphate solution and tested for compressive strength and ultrasonic pulse velocity measurement tests to investigate the effect of concrete samples on sulphate resistance. According to the results obtained, the compressive strength values of concrete samples exposed to a solution of 5% and 10% sulphate have been observed, depending on the fly ash grinding time. It has been found that the concrete samples added have reduced compressive strength by increasing the amount of sulphate solution and have a higher compressive strength value than the reference sample. However, weight losses have been reduced as the grinding time increases. It has also been determined that ultrasonic pulse velocity values have increased as a result of the increase in the fineness of the grinding and the fineness of the flying ash.","PeriodicalId":149401,"journal":{"name":"Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EFFECT OF FLY ASH FİNENESS ON SULFATE RESISTANCE\",\"authors\":\"H. Eker, Demet Demir Şahin, M. Çullu\",\"doi\":\"10.54365/adyumbd.1053376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sulphate corrosion occurs due to a chemical reaction between the hydration of cement, which is a concrete compound, and sulphate ions, resulting in deterioration in concrete. Pozzuolanas such as fly ash are used instead of cement to reduce or minimize damage caused by sulphate on concrete. This study uses fly ash tailings from Afsin Elbistan thermal power plant, which has a component close to cement instead of cement, which is one of the main components of concrete. Examples of different fineness obtained by grinding the fly ash (FA) in the ball mill for 0, 10 and 20 minutes were prepared with a FA substitution rate of 10%, creating examples of fly ash-added concrete. These examples were then exposed to a 10% and 5% additive sulphate solution and tested for compressive strength and ultrasonic pulse velocity measurement tests to investigate the effect of concrete samples on sulphate resistance. According to the results obtained, the compressive strength values of concrete samples exposed to a solution of 5% and 10% sulphate have been observed, depending on the fly ash grinding time. It has been found that the concrete samples added have reduced compressive strength by increasing the amount of sulphate solution and have a higher compressive strength value than the reference sample. However, weight losses have been reduced as the grinding time increases. It has also been determined that ultrasonic pulse velocity values have increased as a result of the increase in the fineness of the grinding and the fineness of the flying ash.\",\"PeriodicalId\":149401,\"journal\":{\"name\":\"Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54365/adyumbd.1053376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54365/adyumbd.1053376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

硫酸盐腐蚀是由于混凝土化合物水泥的水化作用与硫酸盐离子发生化学反应,导致混凝土劣化。粉煤灰等火山灰被用来代替水泥,以减少或尽量减少硫酸盐对混凝土造成的损害。本研究使用的是阿夫辛-伊尔比斯坦热电厂的飞灰尾矿,其中含有一种接近水泥的成分,而不是水泥,而水泥是混凝土的主要成分之一。将粉煤灰在球磨机中研磨0、10、20分钟,FA取代率为10%,制备不同细度的试样,制成掺粉煤灰混凝土试样。然后将这些样品暴露于10%和5%的添加硫酸盐溶液中,进行抗压强度和超声波脉冲速度测量试验,以研究混凝土样品对硫酸盐抗性的影响。根据得到的结果,观察了混凝土试样在5%和10%硫酸盐溶液下的抗压强度值,随粉煤灰磨矿时间的变化。研究发现,随着硫酸盐溶液掺入量的增加,混凝土试样的抗压强度降低,抗压强度值高于参考试样。然而,随着研磨时间的增加,重量损失有所减少。还确定了超声脉冲速度值随着磨矿细度和飞灰细度的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EFFECT OF FLY ASH FİNENESS ON SULFATE RESISTANCE
Sulphate corrosion occurs due to a chemical reaction between the hydration of cement, which is a concrete compound, and sulphate ions, resulting in deterioration in concrete. Pozzuolanas such as fly ash are used instead of cement to reduce or minimize damage caused by sulphate on concrete. This study uses fly ash tailings from Afsin Elbistan thermal power plant, which has a component close to cement instead of cement, which is one of the main components of concrete. Examples of different fineness obtained by grinding the fly ash (FA) in the ball mill for 0, 10 and 20 minutes were prepared with a FA substitution rate of 10%, creating examples of fly ash-added concrete. These examples were then exposed to a 10% and 5% additive sulphate solution and tested for compressive strength and ultrasonic pulse velocity measurement tests to investigate the effect of concrete samples on sulphate resistance. According to the results obtained, the compressive strength values of concrete samples exposed to a solution of 5% and 10% sulphate have been observed, depending on the fly ash grinding time. It has been found that the concrete samples added have reduced compressive strength by increasing the amount of sulphate solution and have a higher compressive strength value than the reference sample. However, weight losses have been reduced as the grinding time increases. It has also been determined that ultrasonic pulse velocity values have increased as a result of the increase in the fineness of the grinding and the fineness of the flying ash.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信