基于卡尔曼滤波的GNSS干扰源跟踪

Sanat K. Biswas, E. Çetin
{"title":"基于卡尔曼滤波的GNSS干扰源跟踪","authors":"Sanat K. Biswas, E. Çetin","doi":"10.1109/PLANS46316.2020.9109997","DOIUrl":null,"url":null,"abstract":"Modern infrastructure and a myriad of services rely on positioning and timing information provided by Global Navigation Satellite Systems (GNSS) and in particular the Global Positioning System (GPS). However, given their low received signal power levels, GNSS signals are vulnerable to Radio Frequency Interference (RFI), either from non-intentional or intentional (jamming), sources. Hence, GNSS itself has become a critical infrastructure which must be protected. Since RFI source is unknown a priori, passive localization systems consisting of spatially distributed Sensor Nodes (SNs) are needed to geo-locate the RFI. These systems typically use source Angle of Arrival (AOA), Time Difference of Arrival (TDOA) or a combination of AOA/TDOA measurements which are non-linear in nature, to estimate the RFI position. Also, dynamics associated with the RFI source(s) further complicates the geo-localization process. This paper explores and reports on the use of various Kalman Filters in combining AOA and TDOA measurements for efficient geo-localization and tracking of dynamic and stationary RFI sources based on real measurements from one such geo-localization system. We report on and contrast the geo-localization accuracies and computational complexities of the Extended, Unscented and Single Propagation Unscented Kalman Filters along with the traditional snap-shot approach.","PeriodicalId":273568,"journal":{"name":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GNSS Interference Source Tracking using Kalman Filters\",\"authors\":\"Sanat K. Biswas, E. Çetin\",\"doi\":\"10.1109/PLANS46316.2020.9109997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern infrastructure and a myriad of services rely on positioning and timing information provided by Global Navigation Satellite Systems (GNSS) and in particular the Global Positioning System (GPS). However, given their low received signal power levels, GNSS signals are vulnerable to Radio Frequency Interference (RFI), either from non-intentional or intentional (jamming), sources. Hence, GNSS itself has become a critical infrastructure which must be protected. Since RFI source is unknown a priori, passive localization systems consisting of spatially distributed Sensor Nodes (SNs) are needed to geo-locate the RFI. These systems typically use source Angle of Arrival (AOA), Time Difference of Arrival (TDOA) or a combination of AOA/TDOA measurements which are non-linear in nature, to estimate the RFI position. Also, dynamics associated with the RFI source(s) further complicates the geo-localization process. This paper explores and reports on the use of various Kalman Filters in combining AOA and TDOA measurements for efficient geo-localization and tracking of dynamic and stationary RFI sources based on real measurements from one such geo-localization system. We report on and contrast the geo-localization accuracies and computational complexities of the Extended, Unscented and Single Propagation Unscented Kalman Filters along with the traditional snap-shot approach.\",\"PeriodicalId\":273568,\"journal\":{\"name\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS46316.2020.9109997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS46316.2020.9109997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现代基础设施和无数的服务依赖于全球导航卫星系统(GNSS),特别是全球定位系统(GPS)提供的定位和授时信息。然而,由于接收到的信号功率水平较低,GNSS信号很容易受到来自非故意或故意(干扰)源的射频干扰(RFI)。因此,GNSS本身已成为必须保护的关键基础设施。由于RFI源是先验未知的,因此需要由空间分布的传感器节点(SNs)组成的被动定位系统来对RFI进行地理定位。这些系统通常使用源到达角(AOA)、到达时间差(TDOA)或AOA/TDOA测量的组合(本质上是非线性的)来估计RFI位置。此外,与RFI源相关的动态进一步使地理定位过程复杂化。本文探讨并报告了各种卡尔曼滤波器在结合AOA和TDOA测量中的使用,以实现有效的地理定位和跟踪动态和静止RFI源,并基于一个这样的地理定位系统的实际测量。我们报告并对比了扩展、无气味和单传播无气味卡尔曼滤波器与传统快照方法的地理定位精度和计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GNSS Interference Source Tracking using Kalman Filters
Modern infrastructure and a myriad of services rely on positioning and timing information provided by Global Navigation Satellite Systems (GNSS) and in particular the Global Positioning System (GPS). However, given their low received signal power levels, GNSS signals are vulnerable to Radio Frequency Interference (RFI), either from non-intentional or intentional (jamming), sources. Hence, GNSS itself has become a critical infrastructure which must be protected. Since RFI source is unknown a priori, passive localization systems consisting of spatially distributed Sensor Nodes (SNs) are needed to geo-locate the RFI. These systems typically use source Angle of Arrival (AOA), Time Difference of Arrival (TDOA) or a combination of AOA/TDOA measurements which are non-linear in nature, to estimate the RFI position. Also, dynamics associated with the RFI source(s) further complicates the geo-localization process. This paper explores and reports on the use of various Kalman Filters in combining AOA and TDOA measurements for efficient geo-localization and tracking of dynamic and stationary RFI sources based on real measurements from one such geo-localization system. We report on and contrast the geo-localization accuracies and computational complexities of the Extended, Unscented and Single Propagation Unscented Kalman Filters along with the traditional snap-shot approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信