使用机器学习预测呼叫中心的呼叫数量

Pavle D. Bugarčić, S. Janković, Snezana Mladenovic
{"title":"使用机器学习预测呼叫中心的呼叫数量","authors":"Pavle D. Bugarčić, S. Janković, Snezana Mladenovic","doi":"10.20544/tts2021.1.1.21.p44","DOIUrl":null,"url":null,"abstract":"Abstract – This paper presents a forecast of a number of call arrivals in the call center per hour using supervised machine learning. For the forecast, the WEKA machine learning software tool was used. The results of the forecast are verified using several methods, which shows very good results. Finally, the results of the forecast are presented graphically using Excel diagrams. Keywords – Machine learning, Forecasting, WEKA","PeriodicalId":384495,"journal":{"name":"Third International Conference “Transport for Today’s Society “","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Number of Calls to the Call Center Using Machine Learning\",\"authors\":\"Pavle D. Bugarčić, S. Janković, Snezana Mladenovic\",\"doi\":\"10.20544/tts2021.1.1.21.p44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract – This paper presents a forecast of a number of call arrivals in the call center per hour using supervised machine learning. For the forecast, the WEKA machine learning software tool was used. The results of the forecast are verified using several methods, which shows very good results. Finally, the results of the forecast are presented graphically using Excel diagrams. Keywords – Machine learning, Forecasting, WEKA\",\"PeriodicalId\":384495,\"journal\":{\"name\":\"Third International Conference “Transport for Today’s Society “\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference “Transport for Today’s Society “\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20544/tts2021.1.1.21.p44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference “Transport for Today’s Society “","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20544/tts2021.1.1.21.p44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文提出了一种利用监督式机器学习预测呼叫中心每小时呼叫到达数的方法。预测使用了WEKA机器学习软件工具。用几种方法对预测结果进行了验证,取得了很好的效果。最后,利用Excel图表对预测结果进行了图形化展示。关键词:机器学习,预测,WEKA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Number of Calls to the Call Center Using Machine Learning
Abstract – This paper presents a forecast of a number of call arrivals in the call center per hour using supervised machine learning. For the forecast, the WEKA machine learning software tool was used. The results of the forecast are verified using several methods, which shows very good results. Finally, the results of the forecast are presented graphically using Excel diagrams. Keywords – Machine learning, Forecasting, WEKA
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信