混合模型的信用评分和拒绝推理

A. Feelders
{"title":"混合模型的信用评分和拒绝推理","authors":"A. Feelders","doi":"10.1002/(SICI)1099-1174(200003)9:1%3C1::AID-ISAF177%3E3.0.CO;2-%23","DOIUrl":null,"url":null,"abstract":"Reject inference is the process of estimating the risk of defaulting for loan applicants that are rejected under the current acceptance policy. We propose a new reject inference method based on mixture modeling, that allows the meaningful inclusion of the rejects in the estimation process. We describe how such a model can be estimated using the EM algorithm. An experimental study shows that inclusion of the rejects can lead to a substantial improvement of the resulting classification rule. Copyright © 1999 John Wiley & Sons, Ltd.","PeriodicalId":153549,"journal":{"name":"Intell. Syst. Account. Finance Manag.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Credit scoring and reject inference with mixture models\",\"authors\":\"A. Feelders\",\"doi\":\"10.1002/(SICI)1099-1174(200003)9:1%3C1::AID-ISAF177%3E3.0.CO;2-%23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reject inference is the process of estimating the risk of defaulting for loan applicants that are rejected under the current acceptance policy. We propose a new reject inference method based on mixture modeling, that allows the meaningful inclusion of the rejects in the estimation process. We describe how such a model can be estimated using the EM algorithm. An experimental study shows that inclusion of the rejects can lead to a substantial improvement of the resulting classification rule. Copyright © 1999 John Wiley & Sons, Ltd.\",\"PeriodicalId\":153549,\"journal\":{\"name\":\"Intell. Syst. Account. Finance Manag.\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intell. Syst. Account. Finance Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/(SICI)1099-1174(200003)9:1%3C1::AID-ISAF177%3E3.0.CO;2-%23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intell. Syst. Account. Finance Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1099-1174(200003)9:1%3C1::AID-ISAF177%3E3.0.CO;2-%23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

拒绝推断是评估在当前接受策略下被拒绝的贷款申请人违约风险的过程。提出了一种新的基于混合建模的拒绝推理方法,该方法允许在估计过程中有意义地包含拒绝。我们描述了如何使用EM算法来估计这样的模型。一项实验研究表明,包含拒绝可以导致最终分类规则的实质性改进。版权所有©1999 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Credit scoring and reject inference with mixture models
Reject inference is the process of estimating the risk of defaulting for loan applicants that are rejected under the current acceptance policy. We propose a new reject inference method based on mixture modeling, that allows the meaningful inclusion of the rejects in the estimation process. We describe how such a model can be estimated using the EM algorithm. An experimental study shows that inclusion of the rejects can lead to a substantial improvement of the resulting classification rule. Copyright © 1999 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信