基于随机干扰和传感器融合的协同导航与覆盖识别

A. R. Braga, Marcelo G. S. Bruno, C. Fritsche, F. Gustafsson
{"title":"基于随机干扰和传感器融合的协同导航与覆盖识别","authors":"A. R. Braga, Marcelo G. S. Bruno, C. Fritsche, F. Gustafsson","doi":"10.1109/SAM.2016.7569611","DOIUrl":null,"url":null,"abstract":"This paper is concerned with cooperative Terrain Aided Navigation of a network of aircraft using fusion of Radar Altimeter and inter-node range measurements. State inference is performed using a Rao-Blackwellized Particle Filter with online measurement noise statistics estimation. For terrain coverage measurement noise parameter identification, an online Expectation Maximization algorithm is proposed, where local sufficient statistics at each node are calculated in the E-step, which are then distributed to neighboring nodes using a random gossip algorithm to perform the M-step at each node. Simulation results show that improvement on positioning and calibration performance can be achieved compared to a non-cooperative approach.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative navigation and coverage identification with random gossip and sensor fusion\",\"authors\":\"A. R. Braga, Marcelo G. S. Bruno, C. Fritsche, F. Gustafsson\",\"doi\":\"10.1109/SAM.2016.7569611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with cooperative Terrain Aided Navigation of a network of aircraft using fusion of Radar Altimeter and inter-node range measurements. State inference is performed using a Rao-Blackwellized Particle Filter with online measurement noise statistics estimation. For terrain coverage measurement noise parameter identification, an online Expectation Maximization algorithm is proposed, where local sufficient statistics at each node are calculated in the E-step, which are then distributed to neighboring nodes using a random gossip algorithm to perform the M-step at each node. Simulation results show that improvement on positioning and calibration performance can be achieved compared to a non-cooperative approach.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于雷达高度计和节点间距离测量融合的飞机网络协同地形辅助导航。状态推断是使用带有在线测量噪声统计估计的rao - blackwelzed粒子滤波器进行的。对于地形覆盖测量噪声参数识别,提出了一种在线期望最大化算法,该算法在e步中计算每个节点的局部充分统计量,然后使用随机八卦算法在每个节点上执行m步,将其分发到相邻节点。仿真结果表明,与非合作方法相比,该方法在定位和标定性能上有明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative navigation and coverage identification with random gossip and sensor fusion
This paper is concerned with cooperative Terrain Aided Navigation of a network of aircraft using fusion of Radar Altimeter and inter-node range measurements. State inference is performed using a Rao-Blackwellized Particle Filter with online measurement noise statistics estimation. For terrain coverage measurement noise parameter identification, an online Expectation Maximization algorithm is proposed, where local sufficient statistics at each node are calculated in the E-step, which are then distributed to neighboring nodes using a random gossip algorithm to perform the M-step at each node. Simulation results show that improvement on positioning and calibration performance can be achieved compared to a non-cooperative approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信