{"title":"有限维量子群的代数形式","authors":"D. Nikshych, L. Vainerman","doi":"10.1201/9780429187919-10","DOIUrl":null,"url":null,"abstract":"We establish the equivalence of three versions of a finite dimensional quantum groupoid: a generalized Kac algebra introduced by T. Yamanouchi, a weak $C^*$-Hopf algebra introduced by G. Bohm, F. Nill and K. Szlachanyi (with an involutive antipode), and a Kac bimodule -- an algebraic version of a Hopf bimodule, the notion introduced by J.-M. Vallin. We also study the structure and construct examples of finite dimensional quantum groupoids.","PeriodicalId":403117,"journal":{"name":"Hopf Algebras and Quantum Groups","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Algebraic Versions of a Finite‐Dimensional Quantum Groupoid\",\"authors\":\"D. Nikshych, L. Vainerman\",\"doi\":\"10.1201/9780429187919-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the equivalence of three versions of a finite dimensional quantum groupoid: a generalized Kac algebra introduced by T. Yamanouchi, a weak $C^*$-Hopf algebra introduced by G. Bohm, F. Nill and K. Szlachanyi (with an involutive antipode), and a Kac bimodule -- an algebraic version of a Hopf bimodule, the notion introduced by J.-M. Vallin. We also study the structure and construct examples of finite dimensional quantum groupoids.\",\"PeriodicalId\":403117,\"journal\":{\"name\":\"Hopf Algebras and Quantum Groups\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hopf Algebras and Quantum Groups\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429187919-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hopf Algebras and Quantum Groups","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429187919-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
摘要
我们建立了有限维量子群样的三个版本的等价性:由T. Yamanouchi引入的广义Kac代数,由G. Bohm, F. Nill和K. Szlachanyi引入的弱$C^*$-Hopf代数(具有对合对极),以及由J.-M引入的Hopf双模的代数版本的Kac双模。Vallin。我们还研究了有限维量子群的结构和构造实例。
Algebraic Versions of a Finite‐Dimensional Quantum Groupoid
We establish the equivalence of three versions of a finite dimensional quantum groupoid: a generalized Kac algebra introduced by T. Yamanouchi, a weak $C^*$-Hopf algebra introduced by G. Bohm, F. Nill and K. Szlachanyi (with an involutive antipode), and a Kac bimodule -- an algebraic version of a Hopf bimodule, the notion introduced by J.-M. Vallin. We also study the structure and construct examples of finite dimensional quantum groupoids.