用于星载通信、导航、无线电科学和传感器的多波段软件定义无线电

C. Haskins, W. Millard
{"title":"用于星载通信、导航、无线电科学和传感器的多波段软件定义无线电","authors":"C. Haskins, W. Millard","doi":"10.1109/AERO.2010.5446908","DOIUrl":null,"url":null,"abstract":"Demanding mass and power requirements across many low-cost NASA mission sets (Discovery, New Frontiers, Mars Scout, SMEX, MIDEX, and others) place a premium on lightweight, efficient, and versatile radios.1,2 A low power, low mass, modular, multi-band software-defined radio (SDR) has been developed by JHU/APL, under the name Frontier Radio, for use in communications, navigation, radio science, and sensor applications for a variety of NASA missions. The current SDR implementation features communications and Doppler navigation modes, and provides a highly capable platform to build upon for future technology enhancements. Features such as in-band channel assignment, bit rate, modulation format, turnaround ratio, loop bandwidths, and coding formats are reconfigurable in flight. Modularity within the core hardware and firmware platforms enable infusion of new technology with minimal non-recurring engineering (NRE) costs. Current configurations operate within the NASA S, X (under development), and Ka-bands (26 and 32 GHz), though alternate RF slices may be added and/or substituted for other bands or sensor applications. This SDR is currently capable of transmit data rates up to 25 Mbps (and higher with 8/16 PSK/QAM) and receive data rates up to 1.3 Mbps via QPSK, with significantly higher capability under development. Compatibility with NASA's STRS architecture helps promote the use of this SDR throughout the NASA community. Along with its low power (5 W receive mode w/internal ovenized oscillator and 28V bus power) and low mass (1.8/2.1 kg, single/dual band configuration), this SDR offers missions a combination of capabilities and efficiency. The NASA Radiation Belt Storm Probes (RBSP) mission is currently developing a flight implementation of this SDR (S-Band only), with launch planned for the year 2012.","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"16 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Multi-band software defined radio for spaceborne communications, navigation, radio science, and sensors\",\"authors\":\"C. Haskins, W. Millard\",\"doi\":\"10.1109/AERO.2010.5446908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demanding mass and power requirements across many low-cost NASA mission sets (Discovery, New Frontiers, Mars Scout, SMEX, MIDEX, and others) place a premium on lightweight, efficient, and versatile radios.1,2 A low power, low mass, modular, multi-band software-defined radio (SDR) has been developed by JHU/APL, under the name Frontier Radio, for use in communications, navigation, radio science, and sensor applications for a variety of NASA missions. The current SDR implementation features communications and Doppler navigation modes, and provides a highly capable platform to build upon for future technology enhancements. Features such as in-band channel assignment, bit rate, modulation format, turnaround ratio, loop bandwidths, and coding formats are reconfigurable in flight. Modularity within the core hardware and firmware platforms enable infusion of new technology with minimal non-recurring engineering (NRE) costs. Current configurations operate within the NASA S, X (under development), and Ka-bands (26 and 32 GHz), though alternate RF slices may be added and/or substituted for other bands or sensor applications. This SDR is currently capable of transmit data rates up to 25 Mbps (and higher with 8/16 PSK/QAM) and receive data rates up to 1.3 Mbps via QPSK, with significantly higher capability under development. Compatibility with NASA's STRS architecture helps promote the use of this SDR throughout the NASA community. Along with its low power (5 W receive mode w/internal ovenized oscillator and 28V bus power) and low mass (1.8/2.1 kg, single/dual band configuration), this SDR offers missions a combination of capabilities and efficiency. The NASA Radiation Belt Storm Probes (RBSP) mission is currently developing a flight implementation of this SDR (S-Band only), with launch planned for the year 2012.\",\"PeriodicalId\":378029,\"journal\":{\"name\":\"2010 IEEE Aerospace Conference\",\"volume\":\"16 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2010.5446908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

许多低成本NASA任务(Discovery, New Frontiers, Mars Scout, SMEX, MIDEX等)对质量和功率的要求很高,因此需要轻量级、高效和多用途的无线电。JHU/APL开发了一种低功率、低质量、模块化、多波段软件定义无线电(SDR),名为“前沿无线电”,用于NASA各种任务的通信、导航、无线电科学和传感器应用。目前的SDR实现具有通信和多普勒导航模式,并为未来的技术增强提供了一个强大的平台。诸如带内信道分配、比特率、调制格式、周转率、环路带宽和编码格式等特性都可以在飞行中重新配置。核心硬件和固件平台的模块化能够以最小的非重复工程(NRE)成本注入新技术。目前的配置在NASA S, X(正在开发中)和ka频段(26和32 GHz)内运行,尽管可以添加和/或替代其他频段或传感器应用。该SDR目前能够传输高达25 Mbps的数据速率(通过8/16 PSK/QAM可以更高),并通过QPSK接收高达1.3 Mbps的数据速率,并且正在开发更高的能力。与NASA的STRS架构的兼容性有助于促进该SDR在整个NASA社区的使用。凭借其低功耗(5w接收模式W /内部烤箱振荡器和28V总线电源)和低质量(1.8/2.1 kg,单/双频配置),该SDR为任务提供了功能和效率的结合。美国宇航局辐射带风暴探测器(RBSP)任务目前正在开发一种SDR(仅限s波段)的飞行实现,计划于2012年发射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-band software defined radio for spaceborne communications, navigation, radio science, and sensors
Demanding mass and power requirements across many low-cost NASA mission sets (Discovery, New Frontiers, Mars Scout, SMEX, MIDEX, and others) place a premium on lightweight, efficient, and versatile radios.1,2 A low power, low mass, modular, multi-band software-defined radio (SDR) has been developed by JHU/APL, under the name Frontier Radio, for use in communications, navigation, radio science, and sensor applications for a variety of NASA missions. The current SDR implementation features communications and Doppler navigation modes, and provides a highly capable platform to build upon for future technology enhancements. Features such as in-band channel assignment, bit rate, modulation format, turnaround ratio, loop bandwidths, and coding formats are reconfigurable in flight. Modularity within the core hardware and firmware platforms enable infusion of new technology with minimal non-recurring engineering (NRE) costs. Current configurations operate within the NASA S, X (under development), and Ka-bands (26 and 32 GHz), though alternate RF slices may be added and/or substituted for other bands or sensor applications. This SDR is currently capable of transmit data rates up to 25 Mbps (and higher with 8/16 PSK/QAM) and receive data rates up to 1.3 Mbps via QPSK, with significantly higher capability under development. Compatibility with NASA's STRS architecture helps promote the use of this SDR throughout the NASA community. Along with its low power (5 W receive mode w/internal ovenized oscillator and 28V bus power) and low mass (1.8/2.1 kg, single/dual band configuration), this SDR offers missions a combination of capabilities and efficiency. The NASA Radiation Belt Storm Probes (RBSP) mission is currently developing a flight implementation of this SDR (S-Band only), with launch planned for the year 2012.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信