{"title":"使用自拍相机在未修改的移动VR头显上进行眼动追踪互动","authors":"P. Drakopoulos, G. Koulieris, K. Mania","doi":"10.1145/3456875","DOIUrl":null,"url":null,"abstract":"Input methods for interaction in smartphone-based virtual and mixed reality (VR/MR) are currently based on uncomfortable head tracking controlling a pointer on the screen. User fixations are a fast and natural input method for VR/MR interaction. Previously, eye tracking in mobile VR suffered from low accuracy, long processing time, and the need for hardware add-ons such as anti-reflective lens coating and infrared emitters. We present an innovative mobile VR eye tracking methodology utilizing only the eye images from the front-facing (selfie) camera through the headset’s lens, without any modifications. Our system first enhances the low-contrast, poorly lit eye images by applying a pipeline of customised low-level image enhancements suppressing obtrusive lens reflections. We then propose an iris region-of-interest detection algorithm that is run only once. This increases the iris tracking speed by reducing the iris search space in mobile devices. We iteratively fit a customised geometric model to the iris to refine its coordinates. We display a thin bezel of light at the top edge of the screen for constant illumination. A confidence metric calculates the probability of successful iris detection. Calibration and linear gaze mapping between the estimated iris centroid and physical pixels on the screen results in low latency, real-time iris tracking. A formal study confirmed that our system’s accuracy is similar to eye trackers in commercial VR headsets in the central part of the headset’s field-of-view. In a VR game, gaze-driven user completion time was as fast as with head-tracked interaction, without the need for consecutive head motions. In a VR panorama viewer, users could successfully switch between panoramas using gaze.","PeriodicalId":356693,"journal":{"name":"ACM Transactions on Applied Perception (TAP)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Eye Tracking Interaction on Unmodified Mobile VR Headsets Using the Selfie Camera\",\"authors\":\"P. Drakopoulos, G. Koulieris, K. Mania\",\"doi\":\"10.1145/3456875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Input methods for interaction in smartphone-based virtual and mixed reality (VR/MR) are currently based on uncomfortable head tracking controlling a pointer on the screen. User fixations are a fast and natural input method for VR/MR interaction. Previously, eye tracking in mobile VR suffered from low accuracy, long processing time, and the need for hardware add-ons such as anti-reflective lens coating and infrared emitters. We present an innovative mobile VR eye tracking methodology utilizing only the eye images from the front-facing (selfie) camera through the headset’s lens, without any modifications. Our system first enhances the low-contrast, poorly lit eye images by applying a pipeline of customised low-level image enhancements suppressing obtrusive lens reflections. We then propose an iris region-of-interest detection algorithm that is run only once. This increases the iris tracking speed by reducing the iris search space in mobile devices. We iteratively fit a customised geometric model to the iris to refine its coordinates. We display a thin bezel of light at the top edge of the screen for constant illumination. A confidence metric calculates the probability of successful iris detection. Calibration and linear gaze mapping between the estimated iris centroid and physical pixels on the screen results in low latency, real-time iris tracking. A formal study confirmed that our system’s accuracy is similar to eye trackers in commercial VR headsets in the central part of the headset’s field-of-view. In a VR game, gaze-driven user completion time was as fast as with head-tracked interaction, without the need for consecutive head motions. In a VR panorama viewer, users could successfully switch between panoramas using gaze.\",\"PeriodicalId\":356693,\"journal\":{\"name\":\"ACM Transactions on Applied Perception (TAP)\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Applied Perception (TAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3456875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Applied Perception (TAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3456875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eye Tracking Interaction on Unmodified Mobile VR Headsets Using the Selfie Camera
Input methods for interaction in smartphone-based virtual and mixed reality (VR/MR) are currently based on uncomfortable head tracking controlling a pointer on the screen. User fixations are a fast and natural input method for VR/MR interaction. Previously, eye tracking in mobile VR suffered from low accuracy, long processing time, and the need for hardware add-ons such as anti-reflective lens coating and infrared emitters. We present an innovative mobile VR eye tracking methodology utilizing only the eye images from the front-facing (selfie) camera through the headset’s lens, without any modifications. Our system first enhances the low-contrast, poorly lit eye images by applying a pipeline of customised low-level image enhancements suppressing obtrusive lens reflections. We then propose an iris region-of-interest detection algorithm that is run only once. This increases the iris tracking speed by reducing the iris search space in mobile devices. We iteratively fit a customised geometric model to the iris to refine its coordinates. We display a thin bezel of light at the top edge of the screen for constant illumination. A confidence metric calculates the probability of successful iris detection. Calibration and linear gaze mapping between the estimated iris centroid and physical pixels on the screen results in low latency, real-time iris tracking. A formal study confirmed that our system’s accuracy is similar to eye trackers in commercial VR headsets in the central part of the headset’s field-of-view. In a VR game, gaze-driven user completion time was as fast as with head-tracked interaction, without the need for consecutive head motions. In a VR panorama viewer, users could successfully switch between panoramas using gaze.