人脑高同质性功能分割研究鲁棒性功能连接

Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra
{"title":"人脑高同质性功能分割研究鲁棒性功能连接","authors":"Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra","doi":"10.1109/SSIAI.2018.8470321","DOIUrl":null,"url":null,"abstract":"Over the years, resting state functional magnetic resonance imaging (rsfMRI) has been a preferred design tool to analyze human brain functions and brain parcellations. Several different statistical methods have been proposed to study functional connectivity and generate various parcellation atlases based on corresponding connectivity maps. In this study, we employ a sliding window correlation method to generate accurate individual voxel-wise dynamic functional connectivity maps, based on which the brain can be parcellated into highly homogeneous functional parcels. Because there is no ground truth for functional brain parcellation, we accomplish parcellation via k-means clustering to compare with other available parcellations. With temporal characteristics of functional connectivity taken into consideration, high homogeneity can be observed in high resolution parcellation of human brain.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-homogeneity functional parcellation of human brain for investigating robust functional connectivity\",\"authors\":\"Xiangyu Liu, Hua Xie, B. Nutter, S. Mitra\",\"doi\":\"10.1109/SSIAI.2018.8470321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the years, resting state functional magnetic resonance imaging (rsfMRI) has been a preferred design tool to analyze human brain functions and brain parcellations. Several different statistical methods have been proposed to study functional connectivity and generate various parcellation atlases based on corresponding connectivity maps. In this study, we employ a sliding window correlation method to generate accurate individual voxel-wise dynamic functional connectivity maps, based on which the brain can be parcellated into highly homogeneous functional parcels. Because there is no ground truth for functional brain parcellation, we accomplish parcellation via k-means clustering to compare with other available parcellations. With temporal characteristics of functional connectivity taken into consideration, high homogeneity can be observed in high resolution parcellation of human brain.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多年来,静息状态功能磁共振成像(rsfMRI)一直是分析人脑功能和脑包裹的首选设计工具。人们提出了几种不同的统计方法来研究功能连通性,并根据相应的连通性图生成各种分区地图集。在这项研究中,我们采用滑动窗口相关方法来生成准确的个体体素动态功能连接图,在此基础上,大脑可以被分割成高度均匀的功能包。因为没有关于功能性脑分割的基本事实,我们通过k-means聚类来完成分割,以与其他可用的分割进行比较。考虑到功能连接的时间特征,在人脑高分辨率分割中可以观察到高度的同质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-homogeneity functional parcellation of human brain for investigating robust functional connectivity
Over the years, resting state functional magnetic resonance imaging (rsfMRI) has been a preferred design tool to analyze human brain functions and brain parcellations. Several different statistical methods have been proposed to study functional connectivity and generate various parcellation atlases based on corresponding connectivity maps. In this study, we employ a sliding window correlation method to generate accurate individual voxel-wise dynamic functional connectivity maps, based on which the brain can be parcellated into highly homogeneous functional parcels. Because there is no ground truth for functional brain parcellation, we accomplish parcellation via k-means clustering to compare with other available parcellations. With temporal characteristics of functional connectivity taken into consideration, high homogeneity can be observed in high resolution parcellation of human brain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信