R. Santagati, A. A. Gentile, S. Knauer, S. Schmitt, S. Paesani, C. Granade, N. Wiebe, Christian Osterkamp, L. McGuinness, Jianwei Wang, M. Thompson, J. Rarity, F. Jelezko, A. Laing
{"title":"用纳米级量子传感器估计磁场的哈密顿学习","authors":"R. Santagati, A. A. Gentile, S. Knauer, S. Schmitt, S. Paesani, C. Granade, N. Wiebe, Christian Osterkamp, L. McGuinness, Jianwei Wang, M. Thompson, J. Rarity, F. Jelezko, A. Laing","doi":"10.1364/QIM.2019.F4A.3","DOIUrl":null,"url":null,"abstract":"Hamiltonian learning can be used to efficiently characterise quantum systems. Here we apply it to the estimation of magnetic fields with quantum sensors, achieving experimentally, room temperature sensing performance comparable to those of cryogenic set-ups.","PeriodicalId":370877,"journal":{"name":"Quantum Information and Measurement (QIM) V: Quantum Technologies","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian learning for the estimation of magnetic fields with nanoscale quantum sensors\",\"authors\":\"R. Santagati, A. A. Gentile, S. Knauer, S. Schmitt, S. Paesani, C. Granade, N. Wiebe, Christian Osterkamp, L. McGuinness, Jianwei Wang, M. Thompson, J. Rarity, F. Jelezko, A. Laing\",\"doi\":\"10.1364/QIM.2019.F4A.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hamiltonian learning can be used to efficiently characterise quantum systems. Here we apply it to the estimation of magnetic fields with quantum sensors, achieving experimentally, room temperature sensing performance comparable to those of cryogenic set-ups.\",\"PeriodicalId\":370877,\"journal\":{\"name\":\"Quantum Information and Measurement (QIM) V: Quantum Technologies\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information and Measurement (QIM) V: Quantum Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/QIM.2019.F4A.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information and Measurement (QIM) V: Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/QIM.2019.F4A.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hamiltonian learning for the estimation of magnetic fields with nanoscale quantum sensors
Hamiltonian learning can be used to efficiently characterise quantum systems. Here we apply it to the estimation of magnetic fields with quantum sensors, achieving experimentally, room temperature sensing performance comparable to those of cryogenic set-ups.