Wenbo Wang, Tien N. Nguyen, Shaohua Wang, Yi Li, Jiyuan Zhang, Aashish Yadavally
{"title":"DeepVD:面向类分离特征的神经网络漏洞检测","authors":"Wenbo Wang, Tien N. Nguyen, Shaohua Wang, Yi Li, Jiyuan Zhang, Aashish Yadavally","doi":"10.1109/ICSE48619.2023.00189","DOIUrl":null,"url":null,"abstract":"The advances of machine learning (ML) including deep learning (DL) have enabled several approaches to implicitly learn vulnerable code patterns to automatically detect software vulnerabilities. A recent study showed that despite successes, the existing ML/DL-based vulnerability detection (VD) models are limited in the ability to distinguish between the two classes of vulnerability and benign code. We propose DeepVD, a graph-based neural network VD model that emphasizes on class-separation features between vulnerability and benign code. DeepVDleverages three types of class-separation features at different levels of abstraction: statement types (similar to Part-of-Speech tagging), Post-Dominator Tree (covering regular flows of execution), and Exception Flow Graph (covering the exception and error-handling flows). We conducted several experiments to evaluate DeepVD in a real-world vulnerability dataset of 303 projects with 13,130 vulnerable methods. Our results show that DeepVD relatively improves over the state-of-the-art ML/DL-based VD approaches 13%–29.6% in precision, 15.6%–28.9% in recall, and 16.4%–25.8% in F-score. Our ablation study confirms that our designed features and components help DeepVDachieve high class-separability for vulnerability and benign code.","PeriodicalId":376379,"journal":{"name":"2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)","volume":"29 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DeepVD: Toward Class-Separation Features for Neural Network Vulnerability Detection\",\"authors\":\"Wenbo Wang, Tien N. Nguyen, Shaohua Wang, Yi Li, Jiyuan Zhang, Aashish Yadavally\",\"doi\":\"10.1109/ICSE48619.2023.00189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advances of machine learning (ML) including deep learning (DL) have enabled several approaches to implicitly learn vulnerable code patterns to automatically detect software vulnerabilities. A recent study showed that despite successes, the existing ML/DL-based vulnerability detection (VD) models are limited in the ability to distinguish between the two classes of vulnerability and benign code. We propose DeepVD, a graph-based neural network VD model that emphasizes on class-separation features between vulnerability and benign code. DeepVDleverages three types of class-separation features at different levels of abstraction: statement types (similar to Part-of-Speech tagging), Post-Dominator Tree (covering regular flows of execution), and Exception Flow Graph (covering the exception and error-handling flows). We conducted several experiments to evaluate DeepVD in a real-world vulnerability dataset of 303 projects with 13,130 vulnerable methods. Our results show that DeepVD relatively improves over the state-of-the-art ML/DL-based VD approaches 13%–29.6% in precision, 15.6%–28.9% in recall, and 16.4%–25.8% in F-score. Our ablation study confirms that our designed features and components help DeepVDachieve high class-separability for vulnerability and benign code.\",\"PeriodicalId\":376379,\"journal\":{\"name\":\"2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)\",\"volume\":\"29 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE48619.2023.00189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE48619.2023.00189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeepVD: Toward Class-Separation Features for Neural Network Vulnerability Detection
The advances of machine learning (ML) including deep learning (DL) have enabled several approaches to implicitly learn vulnerable code patterns to automatically detect software vulnerabilities. A recent study showed that despite successes, the existing ML/DL-based vulnerability detection (VD) models are limited in the ability to distinguish between the two classes of vulnerability and benign code. We propose DeepVD, a graph-based neural network VD model that emphasizes on class-separation features between vulnerability and benign code. DeepVDleverages three types of class-separation features at different levels of abstraction: statement types (similar to Part-of-Speech tagging), Post-Dominator Tree (covering regular flows of execution), and Exception Flow Graph (covering the exception and error-handling flows). We conducted several experiments to evaluate DeepVD in a real-world vulnerability dataset of 303 projects with 13,130 vulnerable methods. Our results show that DeepVD relatively improves over the state-of-the-art ML/DL-based VD approaches 13%–29.6% in precision, 15.6%–28.9% in recall, and 16.4%–25.8% in F-score. Our ablation study confirms that our designed features and components help DeepVDachieve high class-separability for vulnerability and benign code.