用于预测运行状况监测的扭曲高斯过程

Simon Pfingstl, Christian Braun, M. Zimmermann
{"title":"用于预测运行状况监测的扭曲高斯过程","authors":"Simon Pfingstl, Christian Braun, M. Zimmermann","doi":"10.12783/shm2021/36358","DOIUrl":null,"url":null,"abstract":"Gaussian process regression is a powerful method for predicting states associated with uncertainty. A common application field is to predict damage states of structural systems. Recently, Gaussian processes became very popular as they deliver credible intervals for the predicted states. However, one major disadvantage of Gaussian processes is that they assume a normal distribution. This is not justified when the relevant variables can only assume positive values, such as crack lengths or damage states. This paper presents a way to bypass this problem by using warped Gaussian processes: We (1) transform the data with a warping function, (2) apply Gaussian process regression in the latent space, and (3) transform the results back by using the inverse of the warping function. The method is applied to a crack growth example. The paper shows how to integrate prior knowledge into warped Gaussian processes in order to increase prediction accuracy and that warped Gaussian processes lead to better and more plausible results.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"103 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WARPED GAUSSIAN PROCESSES FOR PROGNOSTIC HEALTH MONITORING\",\"authors\":\"Simon Pfingstl, Christian Braun, M. Zimmermann\",\"doi\":\"10.12783/shm2021/36358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian process regression is a powerful method for predicting states associated with uncertainty. A common application field is to predict damage states of structural systems. Recently, Gaussian processes became very popular as they deliver credible intervals for the predicted states. However, one major disadvantage of Gaussian processes is that they assume a normal distribution. This is not justified when the relevant variables can only assume positive values, such as crack lengths or damage states. This paper presents a way to bypass this problem by using warped Gaussian processes: We (1) transform the data with a warping function, (2) apply Gaussian process regression in the latent space, and (3) transform the results back by using the inverse of the warping function. The method is applied to a crack growth example. The paper shows how to integrate prior knowledge into warped Gaussian processes in order to increase prediction accuracy and that warped Gaussian processes lead to better and more plausible results.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"103 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯过程回归是预测与不确定性相关的状态的一种有效方法。一个常见的应用领域是预测结构体系的损伤状态。最近,高斯过程变得非常流行,因为它们为预测状态提供可信区间。然而,高斯过程的一个主要缺点是它们假定为正态分布。当相关变量只能假设正值时,例如裂纹长度或损伤状态,这是不合理的。本文提出了一种通过使用扭曲高斯过程来绕过这个问题的方法:我们(1)用扭曲函数变换数据,(2)在潜在空间中应用高斯过程回归,(3)使用扭曲函数的逆变换结果。将该方法应用于一个裂纹扩展实例。本文介绍了如何将先验知识整合到扭曲高斯过程中以提高预测精度,并且扭曲高斯过程可以得到更好、更可信的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WARPED GAUSSIAN PROCESSES FOR PROGNOSTIC HEALTH MONITORING
Gaussian process regression is a powerful method for predicting states associated with uncertainty. A common application field is to predict damage states of structural systems. Recently, Gaussian processes became very popular as they deliver credible intervals for the predicted states. However, one major disadvantage of Gaussian processes is that they assume a normal distribution. This is not justified when the relevant variables can only assume positive values, such as crack lengths or damage states. This paper presents a way to bypass this problem by using warped Gaussian processes: We (1) transform the data with a warping function, (2) apply Gaussian process regression in the latent space, and (3) transform the results back by using the inverse of the warping function. The method is applied to a crack growth example. The paper shows how to integrate prior knowledge into warped Gaussian processes in order to increase prediction accuracy and that warped Gaussian processes lead to better and more plausible results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信