SynGen:合成数据生成

Akash Kothare, Shridhara Chaube, Yash Moharir, Gaurav Bajodia, S. Dongre
{"title":"SynGen:合成数据生成","authors":"Akash Kothare, Shridhara Chaube, Yash Moharir, Gaurav Bajodia, S. Dongre","doi":"10.1109/iccica52458.2021.9697232","DOIUrl":null,"url":null,"abstract":"Synthetic data is superficial data generated using various machine learning techniques. The respective synthetic data generated can be used to preserve privacy, test systems, or create training data for machine learning algorithms. Synthetic data generation is critical as the need for specific data is huge in today's world, for example, synthetic data can be used to practice various data science tasks and techniques, while maintaining the anonymity of the samples generated. We used an open-source engine named Faker (v5.6.1) and Gaussian copula to create a platform that can generate datasets, based on user requirements as well as available resources. The user can also perform a variety of machine learning algorithms and differentiate their performance either over the generated dataset or a predefined dataset.","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"39 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"SynGen: Synthetic Data Generation\",\"authors\":\"Akash Kothare, Shridhara Chaube, Yash Moharir, Gaurav Bajodia, S. Dongre\",\"doi\":\"10.1109/iccica52458.2021.9697232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic data is superficial data generated using various machine learning techniques. The respective synthetic data generated can be used to preserve privacy, test systems, or create training data for machine learning algorithms. Synthetic data generation is critical as the need for specific data is huge in today's world, for example, synthetic data can be used to practice various data science tasks and techniques, while maintaining the anonymity of the samples generated. We used an open-source engine named Faker (v5.6.1) and Gaussian copula to create a platform that can generate datasets, based on user requirements as well as available resources. The user can also perform a variety of machine learning algorithms and differentiate their performance either over the generated dataset or a predefined dataset.\",\"PeriodicalId\":327193,\"journal\":{\"name\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"volume\":\"39 14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccica52458.2021.9697232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

合成数据是使用各种机器学习技术生成的表面数据。生成的相应合成数据可用于保护隐私、测试系统或为机器学习算法创建训练数据。合成数据生成是至关重要的,因为当今世界对特定数据的需求是巨大的,例如,合成数据可用于实践各种数据科学任务和技术,同时保持生成样本的匿名性。我们使用了一个名为Faker (v5.6.1)的开源引擎和高斯copula来创建一个可以根据用户需求和可用资源生成数据集的平台。用户还可以执行各种机器学习算法,并在生成的数据集或预定义的数据集上区分它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SynGen: Synthetic Data Generation
Synthetic data is superficial data generated using various machine learning techniques. The respective synthetic data generated can be used to preserve privacy, test systems, or create training data for machine learning algorithms. Synthetic data generation is critical as the need for specific data is huge in today's world, for example, synthetic data can be used to practice various data science tasks and techniques, while maintaining the anonymity of the samples generated. We used an open-source engine named Faker (v5.6.1) and Gaussian copula to create a platform that can generate datasets, based on user requirements as well as available resources. The user can also perform a variety of machine learning algorithms and differentiate their performance either over the generated dataset or a predefined dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信