基于多光谱数据集的不同学习参数的人工神经网络作物分类

Pradeep Kumar, R. Prasad, V. Mishra, D. Gupta, A. Choudhary, P. Srivastava
{"title":"基于多光谱数据集的不同学习参数的人工神经网络作物分类","authors":"Pradeep Kumar, R. Prasad, V. Mishra, D. Gupta, A. Choudhary, P. Srivastava","doi":"10.1109/ICMOCE.2015.7489726","DOIUrl":null,"url":null,"abstract":"Present study evaluated the performance of artificial neural network (ANN) algorithm using different learning parameters for various crop classification in Varanasi, India. Satellite images such as Linear Imaging Self Scanning (LISS) IV and Landsat 8 Operational Land Imager (OLI) were used for crop classification and comparative analysis study. The following crop such as barley, wheat, lentil, mustard, pigeon pea, linseed, corn, pea, sugarcane and other crops and non-crop such as water, sand, built up, fallow land, sparse vegetation and dense vegetation were identified in the area and classified. Results indicated a better classification accuracy of ANN algorithm for crop classification study when used with LISS-IV data in the comparison to Landsat 8-OLI multispectral satellite data. The larger values of the learning rates resulted high fluctuations and less classification accuracy using LISS-IV data, while less but nearly uniform results were found using the Landsat 8-OLI data.","PeriodicalId":352568,"journal":{"name":"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Artificial neural network with different learning parameters for crop classification using multispectral datasets\",\"authors\":\"Pradeep Kumar, R. Prasad, V. Mishra, D. Gupta, A. Choudhary, P. Srivastava\",\"doi\":\"10.1109/ICMOCE.2015.7489726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present study evaluated the performance of artificial neural network (ANN) algorithm using different learning parameters for various crop classification in Varanasi, India. Satellite images such as Linear Imaging Self Scanning (LISS) IV and Landsat 8 Operational Land Imager (OLI) were used for crop classification and comparative analysis study. The following crop such as barley, wheat, lentil, mustard, pigeon pea, linseed, corn, pea, sugarcane and other crops and non-crop such as water, sand, built up, fallow land, sparse vegetation and dense vegetation were identified in the area and classified. Results indicated a better classification accuracy of ANN algorithm for crop classification study when used with LISS-IV data in the comparison to Landsat 8-OLI multispectral satellite data. The larger values of the learning rates resulted high fluctuations and less classification accuracy using LISS-IV data, while less but nearly uniform results were found using the Landsat 8-OLI data.\",\"PeriodicalId\":352568,\"journal\":{\"name\":\"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMOCE.2015.7489726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMOCE.2015.7489726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本研究评估了人工神经网络(ANN)算法在不同学习参数下对印度瓦拉纳西不同作物分类的性能。利用线性自扫成像(LISS) IV和Landsat 8 Operational Land Imager (OLI)卫星影像进行作物分类和对比分析研究。在区域内识别出下列作物如大麦、小麦、扁豆、芥菜、鸽豆、亚麻籽、玉米、豌豆、甘蔗等作物和非作物如水、沙、积、休耕地、疏植被和密植被。结果表明,与Landsat 8-OLI多光谱卫星数据相比,使用LISS-IV数据进行作物分类研究时,ANN算法具有更好的分类精度。使用LISS-IV数据时,学习率值较大,导致波动较大,分类精度较低,而使用Landsat 8-OLI数据时,学习率值较少,但结果几乎一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network with different learning parameters for crop classification using multispectral datasets
Present study evaluated the performance of artificial neural network (ANN) algorithm using different learning parameters for various crop classification in Varanasi, India. Satellite images such as Linear Imaging Self Scanning (LISS) IV and Landsat 8 Operational Land Imager (OLI) were used for crop classification and comparative analysis study. The following crop such as barley, wheat, lentil, mustard, pigeon pea, linseed, corn, pea, sugarcane and other crops and non-crop such as water, sand, built up, fallow land, sparse vegetation and dense vegetation were identified in the area and classified. Results indicated a better classification accuracy of ANN algorithm for crop classification study when used with LISS-IV data in the comparison to Landsat 8-OLI multispectral satellite data. The larger values of the learning rates resulted high fluctuations and less classification accuracy using LISS-IV data, while less but nearly uniform results were found using the Landsat 8-OLI data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信