{"title":"高压交联聚乙烯电缆中PD传输特性分析及实验研究","authors":"Yuli Wang, Dan Yang, Rong Xia, Li Zhou","doi":"10.1109/APPEEC.2014.7066062","DOIUrl":null,"url":null,"abstract":"The attenuation and propagation characteristics of partial discharges in high voltage XLPE cable is the critical theoretical basis to achieve precise detection and positioning of partial discharges. In this paper, the propagation characteristics of partial discharges have been analyzed, simulating partial discharge test system of composed by 35kV, 110kV and 220kV XLPE power cables was constructed to study the propagation characteristics in high voltage XLPE cables. Moreover, propagation and attenuation coefficient of partial discharge in different frequency were compared through calculating and analyzing. The results showed that cables have significant high frequency filtering effect to partial discharge and steep rising edge impulses would severely attenuate with the growth of cable length. Meanwhile, semi-conducting layer has significant effects on partial discharge attenuation, Therefore, in precise detection and positioning of partial discharges in HV XLPE cable lines, attenuation compensation should be adopted, even in the distributed measurement system.","PeriodicalId":206418,"journal":{"name":"2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristic analysis and experimental research of PD propagation in HV XLPE cables\",\"authors\":\"Yuli Wang, Dan Yang, Rong Xia, Li Zhou\",\"doi\":\"10.1109/APPEEC.2014.7066062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The attenuation and propagation characteristics of partial discharges in high voltage XLPE cable is the critical theoretical basis to achieve precise detection and positioning of partial discharges. In this paper, the propagation characteristics of partial discharges have been analyzed, simulating partial discharge test system of composed by 35kV, 110kV and 220kV XLPE power cables was constructed to study the propagation characteristics in high voltage XLPE cables. Moreover, propagation and attenuation coefficient of partial discharge in different frequency were compared through calculating and analyzing. The results showed that cables have significant high frequency filtering effect to partial discharge and steep rising edge impulses would severely attenuate with the growth of cable length. Meanwhile, semi-conducting layer has significant effects on partial discharge attenuation, Therefore, in precise detection and positioning of partial discharges in HV XLPE cable lines, attenuation compensation should be adopted, even in the distributed measurement system.\",\"PeriodicalId\":206418,\"journal\":{\"name\":\"2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2014.7066062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2014.7066062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characteristic analysis and experimental research of PD propagation in HV XLPE cables
The attenuation and propagation characteristics of partial discharges in high voltage XLPE cable is the critical theoretical basis to achieve precise detection and positioning of partial discharges. In this paper, the propagation characteristics of partial discharges have been analyzed, simulating partial discharge test system of composed by 35kV, 110kV and 220kV XLPE power cables was constructed to study the propagation characteristics in high voltage XLPE cables. Moreover, propagation and attenuation coefficient of partial discharge in different frequency were compared through calculating and analyzing. The results showed that cables have significant high frequency filtering effect to partial discharge and steep rising edge impulses would severely attenuate with the growth of cable length. Meanwhile, semi-conducting layer has significant effects on partial discharge attenuation, Therefore, in precise detection and positioning of partial discharges in HV XLPE cable lines, attenuation compensation should be adopted, even in the distributed measurement system.